過點Q(-2,
21
)
作圓O:x2+y2=r2(r>0)的切線,切點為D,且QD=4.
(1)求r的值;
(2)設(shè)P是圓O上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y軸于點B,設(shè)
OK
=
OA
+
OB
,求|
OK
|
的最小值(O為坐標(biāo)原點).
(3)從圓O外一點M(x1,y1)向該圓引一條切線,切點為T,N(2,3),且有|MT|=|MN|,求|MT|的最小值,并求此時點M的坐標(biāo).
(1)圓C:x2+y2=r2(r>0)的圓心為O(0,0),則
∵過點Q(-2,
21
)作圓C:x2+y2=r2(r>0)的切線,切點為D,且QD=4
∴r=OD=
QO2-QD2
=
4+21-16
=3;
(2)設(shè)直線l的方程為
x
a
+
y
b
=1(a>0,b>0),即bx+ay-ab=0,則A(a,0),B(0,b),
OK
=
OA
+
OB
,∴
OK
=(a,b),∴|
OK
|=
a2+b2

∵直線l與圓C相切,∴
|-ab|
a2+b2
=3
∴3
a2+b2
=ab≤
a2+b2
2

∴a2+b2≥36
∴|
OK
|≥6
當(dāng)且僅當(dāng)a=b=3
2
時,|
OK
|的最小值為6.
(3)∵切線MN⊥OT,∴|MT|2=|MO|2-9,又|MN|=|MT|,∴|MN|2=|MO|2-9,
M(x1,y1),過N(2,3)的直線的斜率為k,所以NT的方程為:y-3=k(x-2),
與圓的方程x2+y2=9聯(lián)立,
y-3=k(x-2)
x2+y2=9
,消去y可得:(k2+1)x2+2(3-2k)kx+4k2-12k=0,
因為直線與圓相切,所以△=0,即[2(3-2k)k]2-4(k2+1)(4k2-12k)=0,
化簡得:5k2+12k=0,解得k=0或k=-
12
5
,
當(dāng)k=0時,x=0,此時T(0,3),當(dāng)k=
12
5
時,x=
36
13
,此時T(
31
13
,
27
13

∴滿足條件的M點坐標(biāo)為(1,3)或(
31
13
,
27
13
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C經(jīng)過點A(2,0),B(4,0),C(0,2),
(1)求圓C的方程;
(2)若直線l:y=x+b與圓C有交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程x2+y2+ax+2ay+2a2+a-1=0表示圓,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一圖圓切直線l1:x-6y-10=0于點P(右,-1),且圓心在直線l2:5x-3y=0上,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C的方程為x2+y2+ax-1=0,若A(1,2),B (2,1)兩點一個在圓C的內(nèi)部,一個在圓C的外部,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓O:x2+y2=4和點M(1,a),
(1)若過點M有且只有一條直線與圓O相切,求實數(shù)a的值,并求出切線方程;
(2)若a=
2
,過點M的圓的兩條弦AC.BD互相垂直,求AC+BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓M:x2+y2+2x-4y+3=0,若圓M的切線過點(0,1),求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線y=x+b與曲線x=
1-(y-1)2
恰有一個公共點,則b的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)圓(x-2)2+(y-2)2=4的切線l與兩坐標(biāo)軸交于點A(a,0),B(0,b),ab≠0.
(1)證明:(a-4)(b-4)=8;
(2)若a>4,b>4,求△AOB的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案