方程cos2x+sinx=a有實數(shù)解,求實數(shù)a的取值范圍.
分析:若方程cos2x+sinx=a有實數(shù)解,實數(shù)a應(yīng)該屬于函數(shù)y=cos2x+sinx的值域,我們結(jié)合余弦二倍角公式,再結(jié)合二次函數(shù)在定區(qū)間上的值域求法,易得函數(shù)y=cos2x+sinx的值域,進而得到實數(shù)a的取值范圍.
解答:解:∵cos2x+sinx
=1-2sin
2x+sinx
=-2(sinx-
)
2+
又∵-1≤sinx≤1
∴-2≤-2(sinx-
)
2+
≤
∴-2≤2cos2x+sinx≤
則方程cos2x+sinx=a有實數(shù)解
∴-2≤a≤
故實數(shù)a的取值范圍[-2,
]
點評:方程f(x)=a有實數(shù)解,即a屬于函數(shù)y=f(x)的值域,然后將方程有實根的問題,轉(zhuǎn)化為求函數(shù)值域的問題.