【題目】已知函數(shù)f(x)=|x﹣1|,則與y=f(x)相等的函數(shù)是( )
A.g(x)=x﹣1
B.
C.
D.

【答案】D
【解析】解:對于A,函數(shù)g(x)=x﹣1(x∈R),與函數(shù)f(x)=|x﹣1|(x∈R)的對應(yīng)關(guān)系不同,不是相等函數(shù);

對于B,函數(shù)h(x)= =|x﹣1|(x≠1),與函數(shù)f(x)=|x﹣1|(x∈R)的定義域不同,不是相等函數(shù);

對于C,函數(shù)s(x)= =x﹣1(x≥1),與函數(shù)f(x)=|x﹣1|(x∈R)的定義域不同,對應(yīng)關(guān)系不同,不是相等函數(shù);

對于D,函數(shù)t(x)= =|x﹣1|(x∈R),與函數(shù)f(x)=|x﹣1|(x∈R)的定義域相同,對應(yīng)關(guān)系也相同,是相等函數(shù).

所以答案是:D.

【考點精析】本題主要考查了判斷兩個函數(shù)是否為同一函數(shù)的相關(guān)知識點,需要掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時,fn(x)=f(fn1(x)),對于函數(shù)f(x)定義域內(nèi)的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點x0的最小正周期,x0稱為f(x)的n~周期點,已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對于函數(shù)f(x),下列說法正確的是(寫出所有正確命題的編號)

①1是f(x)的一個3~周期點;
②3是點 的最小正周期;
③對于任意正整數(shù)n,都有fn )= ;
④若x0∈( ,1],則x0是f(x)的一個2~周期點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0= ,則下列判斷正確的是(
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的有( ) (1.)很小的實數(shù)可以構(gòu)成集合;
(2.)集合{y|y=x2﹣1}與集合{(x,y)|y=x2﹣1}是同一個集合;
(3.) 這些數(shù)組成的集合有5個元素;
(4.)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限內(nèi)的點集.
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),φ(x)滿足關(guān)系φ(x)=f(x)f(x+α)(其中α是常數(shù)).
(1)如果α=1,f(x)=2x﹣1,求函數(shù)φ(x)的值域;
(2)如果α= ,f(x)=sinx,且對任意x∈R,存在x1 , x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1﹣x2|的最小值;
(3)如果f(x)=Asin(ωx+)(A>0,ω>0),求函數(shù)φ(x)的最小正周期(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程 (a>0,且a≠1)解的個數(shù)是( )
A.2
B.1
C.0
D.不確定的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=cos(x+ )的圖象,只需把余弦曲線y=cosx上的所有的點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
B.“ ”是“ ”的充分不必要條件
C.l為直線,α,β,為兩個不同的平面,若l⊥α,α⊥β,則l∥β
D.命題“?x∈R,2x>0”的否定是“?x0∈R, ≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=|x2﹣2ax|,方程f(x)=ax+a的四個實數(shù)解滿足x1<x2<x3<x4
(1)求a的取值范圍;
(2)證明:f(x4)> +8

查看答案和解析>>

同步練習(xí)冊答案