去年年我校高二理科班學(xué)生共有800人參加了數(shù)學(xué)與地理的學(xué)業(yè)水平測(cè)試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣統(tǒng)計(jì),先將800人按001,002,…,800進(jìn)行編號(hào):如果從第8行第7列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的五個(gè)人的編號(hào)
 
:(下面摘取了第7行至第9行)
考點(diǎn):簡(jiǎn)單隨機(jī)抽樣
專題:概率與統(tǒng)計(jì)
分析:根據(jù)簡(jiǎn)單隨機(jī)抽樣的定義即可得到結(jié)論.
解答: 解:根據(jù)圖表數(shù)據(jù)可得,第一個(gè)數(shù)為785,依次為667,199,507,175,
故答案為:785,667,199,507,175
點(diǎn)評(píng):本題主要考查簡(jiǎn)單隨機(jī)抽樣的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,焦距為2
3

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線l與橢圓C交于兩點(diǎn)M、N,且直線OM、MN、ON的斜率依次滿足kMN2=kOM•kON,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=-x2+2x.函數(shù)y=g(x)的定義域?yàn)閇a,b],值域?yàn)閇
1
b
,
1
a
],其中a、b≠0.在x∈[a,b]時(shí)f(x)=g(x).
(1)求f(x)解析式;
(2)求a、b的值;
(3)是否存在實(shí)數(shù)m,使{(x,y)|y=g(x),x∈[a,b]}∩{(x,y)|y=
1
4
x2+m}≠∅?若存在,求出m的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2x-2,x∈[-1,4),則此函數(shù)的值域?yàn)椋ā 。?/div>
A、[1,6]
B、[1,6 )
C、[-3,6)
D、[-3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x3,y=lnx,y=5x在(0,+∞)上增長(zhǎng)最快的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩個(gè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,對(duì)任意的n∈N*都有
Sn
Tn
=
2n-1
4n-3
,則
a4
b3+b7
+
a8
b3+b9
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(ax2-x+
1
2
)(a>0且a≠1)在[1,
3
2
]上恒正,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若a3+a11=22,則a7=( 。
A、22B、11C、10D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=(x-1)2+2ax+1在區(qū)間(-∞,4)上遞減,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案