【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點.已知函數(shù).
(1)當(dāng)時,求的極值;
(2)若在區(qū)間上有且只有一個極值點,求實數(shù)的取值范圍.
【答案】(1)極小值;(2).
【解析】
(1)求出,令求出方程的解,從而探究隨的變化情況,即可求出極值.
(2)求出,令,分,,三種情況進(jìn)行討論,結(jié)合零點存在定理求出實數(shù)的取值范圍.
解:(1)當(dāng)時,的定義域為,,
令,解得,則隨的變化如下表,
|
| ||
|
|
|
|
|
|
|
故在上是減函數(shù),在上是增函數(shù);
故在時取得極小值;
(2)函數(shù)的定義域為,,
令,則,
當(dāng)時,在恒成立,故在上是增函數(shù),
而,故當(dāng)時,恒成立,
故在區(qū)間上單調(diào)遞增,故在區(qū)間上沒有極值點;
當(dāng)時,由(1)知,在區(qū)間上沒有極值點;
當(dāng)時,令,解得或(舍去);
故在上是增函數(shù),在上是減函數(shù),
①當(dāng),即時,
在上有且只有一個零點,且在該零點兩側(cè)異號,
②令得,不符合題意;
③令得,所以,
而,又,
所以在上有且只有一個零點,且在該零點兩側(cè)異號,
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,以橢圓的頂點為頂點的四邊形的面積為,且該四邊形內(nèi)切圓的半徑為.
(1)求橢圓的方程;
(2)設(shè)是過橢圓中心的任意一條弦,直線是線段的垂直平分線,若是直線與橢圓的一個交點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機(jī)關(guān)工作人員去某街道3所不同的學(xué)校開展駐點服務(wù),每個學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:
表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了散點圖.
(1)根據(jù)散點圖判斷,在推廣期內(nèi),與(均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次.
(3)推廣期結(jié)束后,為更好的服務(wù)乘客,車隊隨機(jī)調(diào)查了100人次的乘車支付方式,得到如下結(jié)果:
表2
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
人次 | 10 | 60 | 30 |
已知該線路公交車票價2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)調(diào)査結(jié)果發(fā)現(xiàn):使用掃碼支付的乘客中有5名乘客享受7折優(yōu)惠,有10名乘客享受8折優(yōu)惠,有15名乘客享受9折優(yōu)惠.預(yù)計該車隊每輛車每個月有1萬人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費標(biāo)準(zhǔn),試估計該車隊一輛車一年的總收入.
參考數(shù)據(jù):
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中.
參考公式:
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓的右頂點到直線的距離為3.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于,兩點,求的面積的最大值(為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當(dāng)時,,若有三個零點,則實數(shù)的取值集合是( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1組,第2組,第3組,第4組,第5組,第6組,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程.
(1)若曲線與只有一個公共點,求的值;
(2)為曲線上的兩點,且,求的面積最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com