2.△ABC中sin2A+3sinAcosA-1=0,A是銳角.
(1)求tan2A的值;
(2)若cosB=$\frac{2\sqrt{5}}{5}$,c=$\sqrt{10}$,求△ABC的面積.

分析 (1)由sin2A+3sinAcosA-1=0可得3sinA=cosA,可求得tanA=$\frac{1}{3}$,利用二倍角的正切公式可求tan2A的值;
(2)△ABC中,由cosB=$\frac{2\sqrt{5}}{5}$可求得sinB=$\frac{\sqrt{5}}{5}$,由(1)可求得sinA與cosA的值,利用兩角和的正弦可求得sinC,又c=$\sqrt{10}$,利用正弦定理可求得a,從而可求△ABC的面積.

解答 解:(1)由條件,得3sinAcosA-cos2A=0,
∵cosA≠0,∴3sinA=cosA,
∴tanA=$\frac{1}{3}$,∴tan2A=$\frac{2tanA}{1{-tan}^{2}A}$=$\frac{3}{4}$.
 (2)由(1)知3sinA=cosA,
又sin2A+cos2A=1,A是銳角,
故sinA=$\frac{\sqrt{10}}{10}$,cosA=$\frac{3\sqrt{10}}{10}$,
又∵cosB=$\frac{2\sqrt{5}}{5}$,B為三角形的內角,
∴sinB=$\frac{\sqrt{5}}{5}$,
故sinC=sin(A+B)=sinAcosB+cosAsinB
=$\frac{2}{\sqrt{5}}$•$\frac{1}{\sqrt{10}}$+$\frac{1}{\sqrt{5}}$•$\frac{3}{\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,
∴a=$\frac{c•sinA}{sinC}$=$\sqrt{2}$.
∴S=$\frac{1}{2}$acsinB=1.

點評 本題考查三角函數(shù)的化簡求值,著重考查三角函數(shù)間的關系式及二倍角的正切與兩角和的正弦,考查運算求解能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( 。
A.0.40B.0.35C.0.30D.0.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.△ABC的內角A,B,C的對邊為a,bc,已知b=2,B=$\frac{π}{6}$,C=$\frac{π}{3}$,則△ABC的面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.數(shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,…,$\frac{1}{m+1}$,$\frac{2}{m+1}$,…,$\frac{m}{m+1}$,…的第20項是( 。
A.$\frac{5}{8}$B.$\frac{3}{4}$C.$\frac{5}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.對于數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項和,且Sn+1-(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令cn=$\frac{2({a}_{n}+n)}{n(_{n}+1)}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.(log916)•(log427)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若直線在x軸上的截距比在y軸上的截距大1,且過點(6,-2),則其方程為x+2y-2=0或2x+3y-6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.y=cos2xB.y=-x2+1C.y=lg2x+1D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)=3|x-m|-1(m為實數(shù))為偶函數(shù),記a=f(log${\;}_{\frac{1}{3}}$4),b=f(log35),c=f(m),則a,b,c的大小關系為(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步練習冊答案