在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8的值等于(  )
A.45B.75
C.300D.180
D

試題分析:據(jù)等差數(shù)列的性質(zhì)可知,項(xiàng)數(shù)之和相等的兩項(xiàng)之和相等,化簡(jiǎn)已知的等式即可求出a5的值,然后把所求的式子也利用等差數(shù)列的性質(zhì)化簡(jiǎn)后,將a5的值代入即可求出值解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=450,得到a5=90,則a2+a8=2a5=180.故答案為:D
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差數(shù)列的性質(zhì)化簡(jiǎn)求值,是一道基礎(chǔ)題.學(xué)生化簡(jiǎn)已知條件時(shí)注意項(xiàng)數(shù)之和等于10的兩項(xiàng)結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,,則的值是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為等差數(shù)列的前項(xiàng)和,,則=(  )
A.B.
C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列是等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)若為數(shù)列的前項(xiàng)和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),和數(shù)列1,,()提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若數(shù)列的通項(xiàng)為,則其前項(xiàng)和為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列中,,前9項(xiàng)和( )
A.108B.72C.36D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則當(dāng)取最小值時(shí),=(      )
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案