【題目】本著健康、低碳的生活理念,租用公共自行車騎行的人越來越多.某種公共自行車的租用收費標準為:每次租車不超過1小時免費,超過1小時的部分每小時收費2元(不足1小時的部分按1小時計算).甲、乙兩人相互獨立來租車,每人各租1輛且租用1次.設(shè)甲、乙不超過1小時還車的概率分別為和;1小時以上且不超過2小時還車的概率分別為和;兩人租車時間都不會超過3小時.
(1) 求甲、乙兩人所付租車費用相同的概率;
(2) 記甲、乙兩人所付的租車費用之和為隨機變量,求的分布列和數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電量最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,x軸的正半軸為極軸建立極坐標系.
(1)試分別將曲線C1的極坐標方程ρ=sinθ-cosθ和曲線C2的參數(shù)方程(t為參數(shù))化為直角坐標方程和普通方程;
(2)若紅螞蟻和黑螞蟻分別在曲線C1和曲線C2上爬行,求紅螞蟻和黑螞蟻之間的最大距離(視螞蟻為點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中是的導數(shù)),求的極小值;
(Ⅱ) 若對,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)恰有兩個極值點.
(1)求實數(shù)的取值范圍;
(2)求證:;
(3)求證: (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從批量較大的產(chǎn)品中隨機取出10件產(chǎn)品進行質(zhì)量檢測,若這批產(chǎn)品的不合格率為0.05,隨機變量表示這10件產(chǎn)品中的不合格產(chǎn)品的件數(shù).
(1)問:這10件產(chǎn)品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪個大?請說明理由;
(2)求隨機變量的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機變量的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大。ɑ《戎疲;
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,函數(shù)f(x)=|2x+2|+|x﹣a|的最小值為2.
(1)求實數(shù)a的值,并作出y=f(x)的圖象;
(2)當m>0,n>0,且m+n=2時,m2+n2≥f(x)恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com