正方形ABCD的邊長是2,E、F分別是AB和CD的中點,將正方形沿EF折成直二面角(如圖).M為矩形AEFD內(nèi)一點,如果∠MB′E=∠MB′C′,MB′和平面B′C′F所成角的正切值為,那么點M到直線EF的距離為__________.

答案:

解析:如圖,過點M作MN⊥EF于N.由已知得MN⊥面EB′C′F.

∴∠MB′N為直線MB′與平面B′C′F所成的角,即tan∠MB′N=.

又因∠MB′E=∠MB′C′.

易知B′N為∠EB′C′的平分線.

∴B′N=2B′E=.

∴MN=B′N·tan∠MB′N=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,E為CD的中點,則
AE
BD
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為1,正方形ADEF所在平面與平面ABCD互相垂直,G,H是DF,F(xiàn)C的中點.
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE;
(3)求三棱錐G-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為4,中心為M,球O與正方形ABCD所在的平面相切于M點,過點M的球的直徑另一端點為N,線段NA與球O的球面的交點為E,且E恰為線段NA的中點,則球O的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O.將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)已知中心為O的正方形ABCD的邊長為2,點M,N分別為線段BC,CD上的兩個不同點,且|
MN
|=1,則
OM
ON
的取值范圍是
[2-
2
,1]
[2-
2
,1]

查看答案和解析>>

同步練習(xí)冊答案