在銳角△ABC中,sinA=
5
13
,cosB=
3
5
,求cosC的值.
考點:兩角和與差的正弦函數(shù),同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)關(guān)系和已知條件分別求得cosA,sinB的值,進(jìn)而利用cosC=cos(π-A-B)=-cos(A+B)通過兩角和公式求得答案.
解答: 解:∵在△ABC中,A,B,C均為銳角,sinA=
5
13
,cosB=
3
5

∴cosA=
1-sin2A
=
12
13
,sinB=
1-cos2B
=
4
5

∴cosC=cos(π-A-B)
=-cos(A+B)
=-(cosAcosB-sinAsinB)
=-(
12
13
×
3
5
-
5
13
×
4
5

=-
16
65
點評:本題主要考查了兩角和與差的正弦函數(shù).考查了學(xué)生對基本公式的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3lnx+x,f(x)與g(x)的圖象有交點(1,1),若g′(x)=x2lnx3-2x2,求f′(e)+g(e)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O為四邊形ABCD的外接圓,且AB=AD,E是CB延長線上一點,直線EA與圓O相切.求證:
CD
AB
=
AB
BE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表.
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(1)由以上統(tǒng)計數(shù)據(jù)求下面2乘2列聯(lián)表中的b,c的值,并問是否有99%的把握認(rèn)為“月收入以55百元為分界點對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) 月收入不低于55百元的人數(shù) 合計
贊成 a=29       b 32
不贊成        c       d=7
合計  50
(2)若對在[15,25),[25,35)的被調(diào)查中各隨機(jī)選取一人進(jìn)行追蹤調(diào)查,記選中的2人中不贊成“樓市限購令”人數(shù)為ξ,求隨機(jī)變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax-lnx.
(1)若a=1,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)過坐標(biāo)原點O作曲線y=f(x)的切線,證明:切點的橫坐標(biāo)為1;
(3)令g(x)=
f(x)
ex
,若函數(shù)g(x)在區(qū)間(0,1]上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,過點C作CE⊥AB于E,G為CE的中點,建立適當(dāng)?shù)淖鴺?biāo)系,用向量的坐標(biāo)表示法證明:
(1)DE∥BC;
(2)D,G,B三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象相鄰的兩條對稱軸之間的距離為
π
2
,其中的一個對稱中心是(
π
3
,0)且函數(shù)的一個最小值為-2.
(1)求函數(shù)f(x)的解析式,并求當(dāng)x∈[0,
π
6
]時f(x)的值域;
(2)若函數(shù)f(x)在區(qū)間(
π
12
,b)上有唯一的零點,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2米,水面寬4米,水位上升1米后,水面寬
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=cos(2x-
π
3
)+cos(2x+
π
6
)有下列命題:
①y=f(x)的最大值為
2
;
②y=f(x)的一條對稱軸方程是x=
π
24

③y=f(x)在區(qū)間(
π
24
,
13π
24
)上單調(diào)遞減;
④將函數(shù)y=
2
cos2x的圖象向左平移
24
個單位后,與已知函數(shù)的圖象重合.
其中正確命題的序號是
 
.(注:把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案