【題目】2016年某招聘會(huì)上,有5個(gè)條件很類(lèi)似的求職者,把他們記為A,B,C,D,E,他們應(yīng)聘秘書(shū)工作,但只有2個(gè)秘書(shū)職位,因此5人中僅有2人被錄用,如果5個(gè)人被錄用的機(jī)會(huì)相等,分別計(jì)算下列事件的概率:
(1)C得到一個(gè)職位
(2)B或E得到一個(gè)職位.
【答案】
(1)解:5人中有2人被錄用的基本事件共有10個(gè),分別為:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),
C得到一職位包含的基本事件有4個(gè),分別為(A,C),(B,C),(C,D),(C,E),
∴C得到一個(gè)職位的概率P1=
(2)解:B或E得到一個(gè)職位,包含的基本事件個(gè)數(shù)有7個(gè),分別為:
(A,B),(A,E),(B,C),(B,D),(B,E),(C,E),(D,E),
∴B或E得到一個(gè)職位的概率P2=
【解析】(1)利用列舉法求出5人中有2人被錄用的基本事件共有10個(gè),C得到一職位包含的基本事件有4個(gè),由此能求出C得到一個(gè)職位的概率.(2)利用列舉法求出B或E得到一個(gè)職位,包含的基本事件個(gè)數(shù),由此能求出B或E得到一個(gè)職位的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣(mài)在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣(mài)的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用網(wǎng)絡(luò)外賣(mài) | 偶爾或不用網(wǎng)絡(luò)外賣(mài) | 合計(jì) | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計(jì) | 110 | 90 | 200 |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣(mài)的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣(mài)優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.
(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- , )?
D.(﹣∞,﹣ ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線(xiàn) 的方程是,直線(xiàn)的參數(shù)方程為(為參數(shù),),設(shè), 直線(xiàn)與曲線(xiàn)交于 兩點(diǎn).
(1)當(dāng)時(shí),求的長(zhǎng)度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C:9x2+4y2=36,直線(xiàn)l: (t為參數(shù))
(Ⅰ)寫(xiě)出曲線(xiàn)C的參數(shù)方程,直線(xiàn)l的普通方程;
(Ⅱ)過(guò)曲線(xiàn)C上任意一點(diǎn)P作與l夾角為30°的直線(xiàn),交l于點(diǎn)A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線(xiàn)(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的機(jī)坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)且與直線(xiàn)平行的直線(xiàn)交于兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面向量 , 滿(mǎn)足| |=1,| |=2.
(1)若 與 的夾角θ=120°,求| + |的值;
(2)若(k + )⊥(k ﹣ ),求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家治理環(huán)境污染的號(hào)召,增強(qiáng)學(xué)生的環(huán)保意識(shí),宿州市某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽,共有900名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽的成績(jī)情況,從中抽取了l00學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),成績(jī)頻率分布直方圖如圖所示.估計(jì)這次測(cè)試中成績(jī)的眾數(shù)為;平均數(shù)為;中位數(shù)為 . (各組平均數(shù)取中值計(jì)算,保留整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com