20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.2C.$\frac{2}{3}$D.$\frac{4}{3}$

分析 根據(jù)幾何體的三視圖,得出該幾何體是底面為正方形,高為1的四棱錐,求出它的體積即可.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是底面為邊長等于2的正方形,高為1的四棱錐;
所以該幾何體的體積為V=$\frac{1}{3}$×22×1=$\frac{4}{3}$.
故選:D.

點評 本題考查了空間幾何體三視圖的應用問題,解題的關鍵是由三視圖得出幾何體的結構特征,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.設函數(shù)f(x)=x3-3x+a,0<a<1,若f(x)的三個零點為x1,x2,x3,且x1<x2<x3,則( 。
A.x1<-2B.x2<0C.0<x2<1D.x3>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.關于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有實根,則實數(shù)m的取值范圍是( 。
A.(-∞,-1]B.(-∞,-1)C.[-1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=(x2-ax-a)ex
(1)當a=-1時,求f(x)在x=0處的切線方程.
(2)討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若橢圓的中心在坐標原點,焦點為(1,0),且過(2,0)點,則橢圓的標準方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=|x2-2x-3|,若a<b<1,且f(a)=f(b),則u=2a+b的最小值為(  )
A.-4B.3-2$\sqrt{10}$C.3-4$\sqrt{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設數(shù)列{an}是首項為1,公差為d的等差數(shù)列,且a1,a2-1,a3-1是等比數(shù)列{bn}的前三項.
(1)求{an}和{bn}的通項公式
(2)求數(shù)列{an-bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個多面體的直觀圖和三視圖如圖,則多面體A-CDEF外接球的表面積是( 。
A.3B.4$\sqrt{3}$πC.12πD.48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知x,y滿足x2+y2-8x-4y-5=0,解答下列問題.
(1)求$\frac{y+1}{x+1}$的范圍;
(2)求x2+y2+2x-2y+3的范圍;
(3)已知圓內(nèi)有一點M(3,2),過M點互相垂直的弦AC、BD,求AC+BD的最小值及四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習冊答案