11.邊長為2的兩個等邊△ABD,△CBD所在的平面互相垂直,則四面體ABCD的體積是1.

分析 取DB中點O,連結(jié)AO,CO,易得AO⊥面BCD,再利用體積公式即可求解.

解答 解:如圖,取DB中點O,連結(jié)AO,CO,
∵△ABD,△CBD邊長為2的兩個等邊△‘
∴AO⊥BD,CO⊥BD,又∵面ABD⊥面BDC;
∴AO⊥面BCD,AO=$\sqrt{3}$,
四面體ABCD的體積v=$\frac{1}{3}×{s}_{△BCD}×AO=\frac{1}{3}×\sqrt{3}×\sqrt{3}=1$,
故答案為:1.

點評 本題考查了三棱錐的體積的求解,關(guān)鍵是找出面的垂線,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F做圓x2+y2=a2的切線,切點為M,切線交y軸于點P,且$\overrightarrow{FM}$=2$\overrightarrow{MP}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=bx+a;
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}的前n項和為Sn
(1)當(dāng){an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時,求an;
(2)若{an}是等差數(shù)列,且S1+a2=7,S2+a3=15,證明:對于任意n∈N*,都有:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}<\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點M(x1,y1)在函數(shù)y=-2x+8的圖象上,當(dāng)x1∈[2,5]時,則$\frac{{{y_1}+1}}{{{x_1}+1}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知四棱錐P-ABCD,側(cè)面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設(shè)平面PAD∩平面PBC=l.
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l過點A(3,0),B(0,4),則直線l的方程為4x+3y-12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(-$\frac{π}{6}$)的值為(  )
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,若$asinBcosC+csinBcosA=\frac{1}{2}b$,且a>b,
(1)求角B的大;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案