3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)的值為$\sqrt{2}$.

分析 由函數(shù)f(x)的部分圖象,得出A、T、ω與φ的值,
寫出f(x)的解析式,計(jì)算f(0)的值.

解答 解:由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,
A=2,$\frac{T}{4}$=$\frac{π}{6}$-(-$\frac{π}{6}$)=$\frac{π}{3}$,∴T=$\frac{4π}{3}$;
又T=$\frac{2π}{ω}$=$\frac{4π}{3}$,∴ω=$\frac{3}{2}$;
當(dāng)x=$\frac{π}{6}$時,f(x)=2,
由五點(diǎn)法畫圖知,ωx+φ=$\frac{π}{2}$,
即$\frac{3}{2}$×$\frac{π}{6}$+φ=$\frac{π}{2}$,
解得φ=$\frac{π}{4}$;
∴f(x)=2sin($\frac{3}{2}$x+$\frac{π}{4}$),
∴f(0)=2sin$\frac{π}{4}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評 本題考查了由函數(shù)f(x)=Asin(ωx+φ)的部分圖象求解析式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知遞增等差數(shù)列{an}的前n項(xiàng)和為Sn,a3a5=45,S7=49,則數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和為( 。
A.$\frac{2n}{2n-1}$B.$\frac{n}{2n-1}$C.$\frac{2n}{2n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.從3名男生和3名女生中選出4人分別分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不能擔(dān)任一辯手,那么不同的編隊(duì)形式有300種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,等腰梯形AMNB內(nèi)接于半圓O,直徑AB=4,MN=2,MN的中點(diǎn)為C,則$\overrightarrow{AM}$•$\overrightarrow{BC}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=3x-x3的單調(diào)遞增區(qū)間為[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a,a∈R
(1)當(dāng)a=0時,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個不同的極值點(diǎn)(極值點(diǎn)是指函數(shù)取極值時對應(yīng)的自變量的值),記為x1,x2,且x1<x2
(。┣骯的取值范圍;
(ⅱ)若不等式e1+λ<x1•x${\;}_{2}^{λ}$恒成立,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$tan({α-β})=\frac{4}{3}$.
(1)求cos(α-β)的值;
(2)若$0<α<\frac{π}{2},-\frac{π}{2}<β<0,sinβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某學(xué)校為解決教師的停車問題,在校內(nèi)規(guī)劃了一塊場地,劃出一排12個停車位置,今有8輛不同的車需要停放,若要求剩余的4個空車位連在一起,則不同的停車方法有( 。
A.${A}_{9}^{9}$種B.${A}_{12}^{8}$種C.8${A}_{8}^{8}$種D.2${A}_{8}^{8}$${A}_{4}^{4}$種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.(ax-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6的展開式中各項(xiàng)系數(shù)的和為16,則展開式中x3項(xiàng)的系數(shù)為( 。
A.974B.$\frac{63}{2}$C.57D.33

查看答案和解析>>

同步練習(xí)冊答案