【題目】設(shè)函數(shù).

(1)若方程上有根,求實數(shù)的取值范圍;

(2)設(shè),若對任意的,都有求實數(shù)的取值范圍.

【答案】(1);(2.

【解析】

(1)由題意可得函數(shù)hx)=fx)﹣3xx2+|x﹣1|﹣3x+2a 上有零點,

h(0)h(1)=(2a+1)(2a﹣2)<0,由此求得a的范圍;

(2)對任意的,都有,即,分別求兩邊函數(shù)的最值即可.

(1)∵方程fx)=3x上有根,

∴函數(shù)hx)=fx)﹣3xx2+|x﹣1|﹣3x+2a 上有零點.

由于在上,hx)=fx)﹣3xx2﹣4x+2a+1是減函數(shù),

故有h(0)h(1)=(2a+1)(2a﹣2)<0,

求得a<1.

(2)對任意的,都有

,

時,的最小值為,

時,的最小值為

上的最小值為

x)=cos2x+2asinx=﹣sin2x+2asinx+1

t=sinx,因為,所以﹣1≤t≤1y=﹣t2+2at+1,其對稱軸為ta,

a≤﹣1時,y=﹣t2+2at+1[﹣1,1]上是減函數(shù),最大值為﹣4a,

此時﹣4a<1,a>無解;

當(dāng)﹣1<a<1時,當(dāng)tay有最大值a2 +1,

此時a2 +1<1,,﹣1<a<1,∴0<a<1

當(dāng)a≥1時,y=﹣t2+2at+1[﹣1,1]上是增函數(shù),最大值為0

此時0<1,顯然恒成立,

綜上:a的范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,若函數(shù)y=f(f(x))-a 恰有5個零點,則實數(shù)a的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù):

x

6

8

10

12

y

2

3

5

6

(1)請在圖中畫出上表數(shù)據(jù)的散點圖;

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點在原點,焦點在x軸的負(fù)半軸的拋物線截直線y=x所得的弦長|P1P2|=4,求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在直二面角中,四邊形是邊長為的正方形,,且.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線段(不包含端點)上是否存在點,使得與平面所成的角為;若存在,寫出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).若曲線在點處的切線方程為

為自然對數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知三點O(0,0),A(2, ),B(2 , ).
(1)求經(jīng)過O,A,B的圓C1的極坐標(biāo)方程;
(2)以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程為 (θ是參數(shù)),若圓C1與圓C2外切,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 的圖象向左平移 個單位,得到的函數(shù)圖象的對稱中心與f(x)圖象的對稱中心重合,則ω的最小值是(
A.1
B.2
C.4
D.8

查看答案和解析>>

同步練習(xí)冊答案