9.已知復(fù)數(shù)z=$\frac{1}{1-i}$,則$\overline{z}$•i在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)z=$\frac{1}{1-i}$=$\frac{1+i}{(1-i)(1+i)}$=$\frac{1}{2}+\frac{1}{2}$i,則$\overline{z}$•i=$(\frac{1}{2}-\frac{1}{2}i)$•i=$\frac{1}{2}+\frac{1}{2}i$在復(fù)平面內(nèi)對應(yīng)的點$(\frac{1}{2},\frac{1}{2})$位于第一象限.
故選:A.

點評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、共軛復(fù)數(shù)的定義,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求導(dǎo)數(shù):
(1)y=x3ex+2x2
(2)y=$\frac{{x}^{3}+1}{{x}^{2}}$+$\sqrt{{x}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和Sn=n2+n,數(shù)列{bn}滿足:bn=$\sqrt{{2^{a_n}}}$.
(1)求數(shù)列{bn}的通項公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將等差數(shù)列1,4,7…,按一定的規(guī)則排成了如圖所示的三角形數(shù)陣.根據(jù)這個排列規(guī)則,數(shù)陣中第20行從左至右的第2個數(shù)是(  )
A.571B.574C.577D.580

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,已知2sinA=3sinC,b-c=$\frac{1}{3}$a,則cosA的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一組數(shù)據(jù)2,x,4,5,10的平均值是5,則此組數(shù)據(jù)的標(biāo)準(zhǔn)差是$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列推理正確的是( 。
A.如果不買彩票,那么就不能中獎,因為你買了彩票,所以你一定中獎
B.因為a>b,a>c,所以a-b>a-c
C.若a,b均為正實數(shù),則$lga+lgb≥\sqrt{lga•lgb}$
D.若a為正實數(shù),ab<0,則$\frac{a}+\frac{a}=-(\frac{-a}+\frac{-b}{a})≤-2\sqrt{\frac{-a}•\frac{-b}{a}}=-2$≤-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某四面體的三視圖如圖所示,則該四面體的體積是( 。
A.$\frac{128}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個正整數(shù)數(shù)表如表所示(表中下一行中數(shù)的個數(shù)是上一行中數(shù)的個數(shù)的2倍),則第9行中的第6個數(shù)是( 。
第1行1
第2行2    3
第3行4    5    6    7
A.132B.261C.262D.517

查看答案和解析>>

同步練習(xí)冊答案