給定橢圓>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn).求證:l1⊥l2
【答案】分析:(1)欲求橢圓C的方程和其“準(zhǔn)圓”方程,只要求出半徑即可,即分別求出橢圓方程中的a,b即得,這由題意不難求得;
(2)先分兩種情況討論:①當(dāng)l1,l2中有一條無(wú)斜率時(shí);②.②當(dāng)l1,l2都有斜率時(shí),第一種情形比較簡(jiǎn)單,對(duì)于第二種情形,將與橢圓只有一個(gè)公共點(diǎn)的直線為y=t(x-x)+y,代入橢圓方程,消去去y得到一個(gè)關(guān)于x的二次方程,根據(jù)根的判別式等于0得到一個(gè)方程:(3-x2)t2+2xyt+(x2-3)=0,而直線l1,l2的斜率正好是這個(gè)方程的兩個(gè)根,從而證得l1⊥l2
解答:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124512918126457/SYS201310251245129181264020_DA/1.png">,所以b=1
所以橢圓的方程為,
準(zhǔn)圓的方程為x2+y2=4.
(2)①當(dāng)l1,l2中有一條無(wú)斜率時(shí),不妨設(shè)l1無(wú)斜率,
因?yàn)閘1與橢圓只有一個(gè)公共點(diǎn),則其方程為
當(dāng)l1方程為時(shí),此時(shí)l1與準(zhǔn)圓交于點(diǎn)
此時(shí)經(jīng)過(guò)點(diǎn)(或且與橢圓只有一個(gè)公共點(diǎn)的直線是y=1(或y=-1),
即l2為y=1(或y=-1),顯然直線l1,l2垂直;
同理可證l1方程為時(shí),直線l1,l2垂直.
②當(dāng)l1,l2都有斜率時(shí),設(shè)點(diǎn)P(x,y),其中x2+y2=4,
設(shè)經(jīng)過(guò)點(diǎn)P(x,y),與橢圓只有一個(gè)公共點(diǎn)的直線為y=t(x-x)+y,
,消去y得到x2+3(tx+(y-tx))2-3=0,
即(1+3t2)x2+6t(y-tx)x+3(y-tx2-3=0,△=[6t(y-tx)]2-4•(1+3t2)[3(y-tx2-3]=0,
經(jīng)過(guò)化簡(jiǎn)得到:(3-x2)t2+2xyt+1-y2=0,因?yàn)閤2+y2=4,所以有(3-x2)t2+2xyt+(x2-3)=0,
設(shè)l1,l2的斜率分別為t1,t2,因?yàn)閘1,l2與橢圓都只有一個(gè)公共點(diǎn),
所以t1,t2滿足上述方程(3-x2)t2+2xyt+(x2-3)=0,
所以t1•t2=-1,即l1,l2垂直.
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程、直線與圓錐曲線的綜合問(wèn)題,突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法,要求考生分析問(wèn)題和解決問(wèn)題的能力、計(jì)算能力較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省宿遷市宿豫中學(xué)高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

給定橢圓>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F1的距離為
(1)求橢圓C的方程及其“伴隨圓”方程;
(2)若傾斜角為45°的直線l與橢圓C只有一個(gè)公共點(diǎn),且與橢圓C的伴隨圓相交于M、N兩點(diǎn),求弦MN的長(zhǎng);
(3)點(diǎn)P是橢圓C的伴隨圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省煙臺(tái)市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

給定橢圓>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn).求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市寶山區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

給定橢圓>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F1的距離為
(1)求橢圓C的方程及其“伴隨圓”方程;
(2)若傾斜角為45°的直線l與橢圓C只有一個(gè)公共點(diǎn),且與橢圓C的伴隨圓相交于M、N兩點(diǎn),求弦MN的長(zhǎng);
(3)點(diǎn)P是橢圓C的伴隨圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省長(zhǎng)沙市長(zhǎng)望瀏寧四縣市高三3月調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

給定橢圓>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn).求證:l1⊥l2

查看答案和解析>>

同步練習(xí)冊(cè)答案