設(shè)函數(shù)
(Ⅰ)證明:當(dāng)0<a<b,且f(a)=f(b)時(shí),ab>1;
(Ⅱ)點(diǎn)P(xo,yo)(0<xo<1)在曲線y=f(x)上,求曲線在點(diǎn)P處的切線與x軸和y軸的正向所圍成的三角形面積表達(dá)式(用xo表示).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1)求向量b+c的長度的最大值;
(2)設(shè)α=,且a⊥(b+c),求cos β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如果a、b、c滿足c<b<a,且ac<0,那么下列選項(xiàng)中不一定成立的是 ( )
A.a(chǎn)b>ac B.c(b-a)>0 C.cb2<ab2 D.dc(a-c)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式<0的解集為( ).
A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)
C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax3-x2+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0;
(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,求出實(shí)數(shù)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,直線y= x嚴(yán)與拋物線y=x2-4交于A、B兩點(diǎn),線段AB的垂直平分線與直線y=-5交于點(diǎn)Q.
(1)求點(diǎn)Q的坐標(biāo)
(2)當(dāng)P為拋物線上位于線段AB下方(含點(diǎn)A、B)的動(dòng)點(diǎn)時(shí),求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(n)=3n-C1n3n-1+C2n·3n-2-…+(-1)n+log2n(n∈N*),當(dāng)n=________時(shí),|f(n)-2005|取得最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com