【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB<BC,將△ABC沿著對角線AC所在的直線進行翻折,記BD中點為M,則在翻折過程中,下列說法錯誤的是( )
A.存在使得AB⊥DC的位置
B.存在使得AB⊥BD的位置
C.存在使得AM⊥DC的位置
D.存在使得AM⊥AC的位置
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sinx的圖象向右平移個單位,橫坐標(biāo)縮小至原來的倍(縱坐標(biāo)不變)得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)g(x)的解析式;
(2)若關(guān)于x的方程2g(x)-m=0在x∈[0,]時有兩個不同解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x∈(0,+∞)時,不等式9x﹣m3x+m+1>0恒成立,則m的取值范圍是( )
A.2﹣2 <m<2+2
B.m<2
C.m<2+2
D.m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,四點,,,中恰有兩個點為橢圓的頂點,一個點為橢圓的焦點.
(1)求橢圓的方程;
(2)若斜率為1的直線與橢圓交于不同的兩點,且,求直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合P={x|x2﹣x﹣6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求實數(shù)a的取值范圍;
(2)若P∩Q=,求實數(shù)a的取值范圍;
(3)若P∩Q={x|0≤x<3},求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·清遠(yuǎn)期末]一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù)/個 | 5 | 20 | 100 | 325 |
(1)根據(jù)散點圖判斷與哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
參考數(shù)據(jù):,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com