【題目】下列說法錯誤的是(

A.在回歸直線方程中,當解釋變量x每增加1個單位時,預報變量平均增加個單位.

B.對分類變量XY,隨機變量的觀測值k越大,則判斷XY有關(guān)系的把握程度越小.

C.兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1.

D.回歸直線過樣本點的中心.

【答案】B

【解析】

根據(jù)線性回歸方程,相關(guān)系數(shù),獨立性檢驗的相關(guān)知識即可判斷選項的正誤.

對于選項A:在回歸直線方程中,當解釋變量x每增加1個單位時,預報變量y平均增加0.2個單位,正確.

對于選項B:對分類變量XY,隨機變量的觀測值k越大,則判斷“XY有關(guān)系"的把握程度越大,錯誤.

對于選項C:兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1,正確.

對于選項D:回歸直線過樣本點的中心,正確.

故選: B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知空間9點集,其中任意四點不共面.在這9個點間聯(lián)結(jié)若干條線段,構(gòu)成一個圖G,使圖中不存在四面體.問圖G中最多有多少個三角形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于曲線:上原點之外的每一點,求證存在過的直線與橢圓相交于兩點、,使均為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,

(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標

(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市的教育主管部門對所管轄的學校進行年終督導評估,為了解某學校師生對學校教學管理的滿意度,分別從教師和不同年級的同學中隨機抽取若干師生,進行評分(滿分100分),繪制如下頻率分布直方圖(分組區(qū)間為 , , , ),并將分數(shù)從低到高分為四個等級:

滿意度評分

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有340人.

(1)求表中的值及不滿意的人數(shù);

(2)在等級為不滿意的師生中,老師占,現(xiàn)從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔任整改督導員,記為老師整改督導員的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)甲、乙兩位同學上學期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學到校情況互不影響,且任一同學每天到校情況相互獨立.

(Ⅰ)用表示甲同學上學期間的三天中7:30之前到校的天數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)設(shè)為事件“上學期間的三天中,甲同學在7:30之前到校的天數(shù)比乙同學在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2013支球隊進行氣次年度超級足球循環(huán)賽,每兩支球隊均恰比賽場,每場比賽勝者得3,負者得0,平局各得1.比賽結(jié)束后,甲把他所在球隊的總分告訴了乙,乙馬上知道了甲所在球隊在整個比賽中的勝負場數(shù).試問:甲所在球隊在這次比賽中所得的總分是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某歌舞團有名演員,他們編排了一些節(jié)目,每個節(jié)目都由四名演員同臺表演.在一次演出中,他們發(fā)現(xiàn):能適當安排若干個節(jié)目,使團中每兩名演員都恰有一次在這次演出中同臺表演。求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動物保護關(guān)注者”,則山圖中表格可得列聯(lián)表如下:

非“動物保護關(guān)注者”

是“動物保護關(guān)注者”

合計

10

45

55

15

30

45

合計

25

75

100

1)請判斷能否在犯錯誤的概率不超過005的前提下認為“動物保護關(guān)注者”與性別有關(guān)?

2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調(diào)查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女動物保護達人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案