【題目】已知函數(shù)

1)求曲線處的切線方程;

2)函數(shù)在區(qū)間上有零點(diǎn),求的值;

3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.

【答案】(1);(2);(3)

【解析】

1)根據(jù)導(dǎo)數(shù)幾何意義求出切線斜率,由解析式求得切點(diǎn)坐標(biāo),從而得到切線方程;(2)由導(dǎo)數(shù)可得函數(shù)單調(diào)性,利用零點(diǎn)存在性定理可判斷出上有零點(diǎn),從而得到結(jié)果;(3)整理出,可知的兩根,從而得到,;根據(jù)的范圍可確定的范圍后,將兩式代入進(jìn)行整理;構(gòu)造函數(shù),,利用導(dǎo)數(shù)可求得函數(shù)的最小值,該最小值即為的最大值.

1)由題意得:

,

曲線處切線為:,即

2)由(1)知:

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞減,在上單調(diào)遞增

,,

由零點(diǎn)存在定理知:上有一個(gè)零點(diǎn)

上單調(diào)遞增 該零點(diǎn)為上的唯一零點(diǎn)

3)由題意得:

的兩個(gè)極值點(diǎn),即為方程的兩根

,

,又,解得:

,

上單調(diào)遞減

即實(shí)數(shù)的最大值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程及直線的直角坐標(biāo)方程;

(2)已知點(diǎn)為曲線上的動點(diǎn),當(dāng)點(diǎn)到直線的距離最大時(shí),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足任意都有,時(shí),,,,的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,底面是等腰三角形,且,側(cè)面 是菱形,,平面平面,點(diǎn)的中點(diǎn).

(1)求證:

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,平面,,,,的中點(diǎn),是線段上的一點(diǎn),且.

(1)求證:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),

①求曲線在點(diǎn)處的切線方程;

②求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{}的首項(xiàng)a12,前n項(xiàng)和為,且數(shù)列{}是以為公差的等差數(shù)列·

1)求數(shù)列{}的通項(xiàng)公式;

2)設(shè),,數(shù)列{}的前n項(xiàng)和為

①求證:數(shù)列{}為等比數(shù)列,

②若存在整數(shù)mn(mn1),使得,其中為常數(shù),且2,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若,其中為自然對數(shù)的底數(shù),求證:函數(shù)有2個(gè)不同的零點(diǎn);

(3)若對任意的恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案