6.平羅中學從高二年級參加生物考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六組[40,50),[50,60),…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分.

分析 (1)由頻率分布圖中小矩形的面積和為1,能求出得成績落在[70,80)上的頻率,由此能補全這個頻率分布直方圖.
(2)由頻率分布直方圖能估計這次考試的及格率和平均分.

解答 解:(1)由頻率分布圖得成績落在[70,80)上的頻率為:
1-(0.010+0.015+0.015+0.025+0.005)×10=0.3.
補全這個頻率分布直方圖,如下圖:

(2)由頻率分布直方圖估計這次考試的及格率為:
(0.015+0.030+0.025+0.005)×10×100%=75%.
平均分為:0.01×10×45+0.015×10×55+0.015×10×65+0.030×10×75+0.025×10×85+0.005×10×95=71.

點評 本題考查頻率、及格率、平均分的求法,是基礎(chǔ)題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|x2-3x+2=0},B={x|3x+1=9},則A∪B=( 。
A.{-2,1,2}B.{-2,2}C.{1,2}D.{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)對一切x,y∈R,都有f(x+y)=f(x)+f(y).
(1)判斷函數(shù)f(x)的奇偶性,并給與證明;
(2)若f(-3)=a,試用a表示f(12).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2cosx•cos(x-$\frac{π}{3}$)-$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(C)=$\frac{1}{2}$,c=2$\sqrt{3}$,且△ABC的面積為2$\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“若x2<1,則-1<x<1”的逆否命題是( 。
A.若x2≥1,則-1≥x≥1B.若1≥x≥-1,則x2≥1
C.若x≤-1或x≥1,則x2≥1D.若x2≥1,則x≤-1或x≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.知a,b,c為三條不重合的直線,α,β,γ為三個不重合的平面:
①a∥c,b∥c⇒a∥b;
②a∥γ,b∥γ⇒a∥b;
③a∥c,c∥α⇒a∥α;
④a?α,b?α,a∥b⇒a∥α.
其中正確的命題是( 。
A.①④B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知一個幾何體的三視圖及其尺寸如圖所示(單位:cm),則它的表面積為24πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,若$(\overrightarrow{e_1}-2\overrightarrow{e_2})∥(λ\overrightarrow{e_1}+4\overrightarrow{e_2})$,則實數(shù)λ的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,a,b,c分別為A,B,C的對邊,且a2+b2=c2-ab,則C的大小是( 。
A.120°B.90°C.60°D.30°

查看答案和解析>>

同步練習冊答案