已知A為△ABC的內角,
m
=(2cosA,1),
n
=(2cos2
π
4
+
A
2
),-1+sin2A),|
m
+
n
|=|
m
-
n
|,則A的大小為( 。
A、
π
3
B、
π
6
C、
3
D、
π
4
考點:二倍角的正弦,平面向量數(shù)量積的運算
專題:計算題,三角函數(shù)的求值,平面向量及應用
分析:由|
m
+
n
|=|
m
-
n
|,知
m
n
=2cosA(1-sinA)+(-1+sin2A)=0,由此能求出角A的大。
解答: 解:∵向量 
m
=(2cosA,1),
n
=( 2cos2
π
4
+
A
2
),-1+sin2A),
n
=(1+cos(
π
2
+A),-1+sin2A)=(1-sinA,-1+sin2A),
∵|
m
+
n
|=|
m
-
n
|,
m
n
=2cosA(1-sinA)+(-1+sin2A)
=2cosA-2cosAsinA+sin2A-1=2cosA-1=0,
∴cosA=
1
2
,∴∠A=
π
3

故選A.
點評:本題考查平面向量和三角函數(shù)的綜合運用,解題時要認真審題,仔細解答,注意三角函數(shù)恒等變換的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,數(shù)列{
Sn
n
}是首項與公差都為1的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=an+2 an,試求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

汽車在行駛中,由于慣性的作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”.剎車距離是分析事故的一個重要因素.某市的一條道路在一個限速為40km/h的彎道上,甲、乙兩輛汽車相向而行,發(fā)現(xiàn)情況不對,同時剎車,但還是相撞了.事后現(xiàn)場勘查測得甲車剎車距離剛好12m,乙車剎車距離略超過10m.又知甲、乙兩種車型的剎車距離 S(m)與車速x(km/h)之間分別有如下關系:S=0.1x+0.01x2,S=0.05x+0.005x2.問:甲、乙兩車有無超速現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設方程2x+x+2=0和log2x+x+2=0的根分別為p和q,凼數(shù)f(x)=(x+p)(x+q),則關于x的不等式f(x2+2x+2)<f(0)的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x
x
,x≥1
2x-1,x<1
,g(x)=x2-2x,若關于x的方程f[g(x)]=k有四個不相等的實根,則實數(shù)k∈(  )
A、(
1
2
,1)
B、(
1
4
,1)
C、(0,1)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l過圓x2+y2-2x+4y-4=0的圓心,且在y軸上的截距等于圓的半徑,則直線l的方程為( 。
A、5x+y-3=0
B、5x-y-3=0
C、4x+y-3=0
D、3x+2y-6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

中心在原點,坐標軸為對稱軸的橢圓,以直線3x+4y-12=0與坐標軸的交點為頂點和焦點,則此橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等差數(shù)列,其前n項和為Sn,若a4+a5=20,則S8=(  )
A、18B、36C、64D、80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=1,a2=1,an+an+2=n+1(n∈N*),若{an}前n項和為Sn,則S100=
 

查看答案和解析>>

同步練習冊答案