等比數(shù)列{an}中,若a3a5a7a9=16,則a5a7=
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:等比數(shù)列{an}中,a5a7=a3a9>0,根據(jù)a3a5a7a9=16,即可求a5a7
解答: 解:等比數(shù)列{an}中,a5a7=a3a9>0
∵a3a5a7a9=16,
∴a5a7=4.
故答案為:4.
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算能力,確定a5a7=a3a9>0是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
lg2
1
3
-4lg3+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)正方形的中心到各頂點(diǎn)的連線,能構(gòu)成多少個(gè)向量?試寫出所構(gòu)成的全部向量;若正方形的邊長為1,求所有向量的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,求直線l截圓所得的弦最長及最短時(shí)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=AB=
2
,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°.
(Ⅰ)求棱柱的高;
(Ⅱ)求B1C1與平面A1BC1所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為F函數(shù).給出下列函數(shù):
①f(x)=2x;
②f(x)=x2+1;
③f(x)=
2
(sinx+cosx)

其中是F函數(shù)的有
 
.(寫出所有F函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用一個(gè)邊長為4的正三角形硬紙,沿各邊中點(diǎn)連線垂直折起三個(gè)小三角形,做成一個(gè)蛋托,半徑為1的雞蛋(視為球體)放在其上(如圖),則雞蛋中心(球心)與蛋托底面的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=3,公差d∈N*,等比數(shù)列{bn}中,b1=a1,b2=a2,若要使{bn}的所有項(xiàng)都是{an}中的項(xiàng),則滿足條件的公差d的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四面體ABCD,線段AB∥平面α,E,F(xiàn)分別是線段AD和BC的中點(diǎn),當(dāng)正四面體繞以AB為軸旋轉(zhuǎn)時(shí),則線段AB與EF在平面α上的射影所成角余弦值的范圍是( 。
A、[0,
2
2
]
B、[
2
2
,1]
C、[
1
2
,1]
D、[
1
2
,
2
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案