設a,b,c是空間三條直線,下面給出5個結論:
(1)若a和b相交,b和c相交,則a和c也相交;
(2)若a和b平行,b和c平行,則a和c也平行;
(3)若a和b垂直,b和c垂直,則a和c也垂直;
(4)若a和b是異面直線,b和c是異面直線,則a和c也是異面直線;
(5)若a和b共面,b和c共面,則a和c也共面.
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4
考點:空間中直線與直線之間的位置關系
專題:空間位置關系與距離
分析:利用空間中線線、線面、面面間的位置關系求解.
解答: 解:(1)當a∥c時,能夠存在a和b相交,b和c相交,故(1)錯誤;
(2)若a和b平行,b和c平行,則由平行公理得a和c也平行,故(2)正確;
(3)若a和b垂直,b和c垂直,則a和c相交、平行或異面,故(3)錯誤;
(4)若a和b是異面直線,b和c是異面直線,
則a和c相交、平行或異面,故(4)錯誤;
(5)在正方體ABCD-A1B1C1D1中,
BC與CC1共面,AB與BC共面,
但AB與CC1是異面直線,故(5)錯誤.
故選:A.
點評:本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

425
屬于集合( 。
A、{-25,25}
B、{5,0,-5}
C、{625,-625}
D、{0,
5
,-
5
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,棱長為a,M、N分別是AB1、A1C1上的點,A1N=AM,
(1)求證:MN∥BB1C1C;
(2)求MN的長度最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
1
x
+alnx,x∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若對任意的x∈[1,e],都有
2
e
≤f(x)≤2e恒成立,求實數(shù)a的取值范圍.(注:e為自然對數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設關于x的一元二次方程x2-2ax+b2=0.
(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四面體P-ABC中,PA,PB,PC兩兩垂直,設PA=PB=PC=a,則點P到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,P是C上的點,PF2⊥F1F2,∠PF1F2=60°,則C的離心率為(  )
A、
3
6
B、
3
-1
C、
3
2
D、2-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
12
+
y2
9
=1上的兩個焦點為F1、F2,點P在橢圓上,若線段PF1的中點Q恰好在y軸上,則
|PF1|
|PF2|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)f(x)=x2+mx+1圖象的對稱軸是x=1,
(1)求m的值;
(2)當x∈[0,4]時,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案