【題目】已知函數(shù),曲線與在原點處的切線相同。
(1)求的值;
(2)求的單調區(qū)間和極值;
(3)若時,,求的取值范圍。
【答案】(1); (2)見解析;(3).
【解析】
(1)分別對函數(shù)和求導,由題意得,即可求出結果;
(2)由求增區(qū)間,由求減區(qū)間,進而可得出結果;
(3)構造函數(shù),由導數(shù)的方法分類討論研究其單調性和最值即可得出結果.
(1)因為,
依題意,,得,
(2)所以
當時, ;當時
故的單調遞減區(qū)間為,單調遞增區(qū)間為,
的極小值為 ;無極大值;
(3)由(1)知,當時,,,此時無論K取何值均滿足,
當時,令
所以,
又令,所以
因為時,令得,
①當時,,所以在遞增,
從而 即滿足時,。
②當時,,所以在遞增,
又因為,x趨近時趨近,
根據(jù)零點存在性定理所以存在使得,
所以在上遞減,在上遞增,因為,所以,
此時不滿足時,
綜上所述,的取值范圍是。
科目:高中數(shù)學 來源: 題型:
【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總人數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.
(1)求的直角坐標方程與點的直角坐標;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:
①異面直線與所成的角是定值;
②三棱錐的體積是定值;
③直線與平面所成的角是定值.
其中真命題的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種出口產品的關稅稅率t.市場價格x(單位:千元)與市場供應量p(單位:萬件)之間近似滿足關系式:,其中k.b均為常數(shù).當關稅稅率為75%時,若市場價格為5千元,則市場供應量約為1萬件;若市場價格為7千元,則市場供應量約為2萬件.
(1)試確定k.b的值;
(2)市場需求量q(單位:萬件)與市場價格x近似滿足關系式:.P = q時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:的焦點坐標為,點,過點P作直線l交拋物線C于A,B兩點,過A,B分別作拋物線C的切線,兩切線交于點Q,且兩切線分別交x軸于M,N兩點,則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有5名同學進行投籃比賽,決出第1名至第5名的不同名次,教練在公布成績前透露,五名同學中的甲乙名次相鄰,丙不是第一名,丁不是最后一名,根據(jù)教練的說法,這5名同學的名次排列最多有( )種不同的情況.
A.28B.32C.54D.64
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com