設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)當(dāng)b>時(shí),判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)求函數(shù)f(x)的極值點(diǎn);
(3)證明對(duì)任意的正整數(shù)n,不等式>都成立.
解:(Ⅰ)由題意知,的定義域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0960/0021/73fcde35ded9b82f6df2883509b3941e/C/Image117.gif" width=61 height=21>, 設(shè),其圖象的對(duì)稱軸為,.當(dāng)時(shí),, 即在上恒成立,當(dāng)時(shí),, 當(dāng)時(shí),函數(shù)在定義域上單調(diào)遞增. (Ⅱ)①由(Ⅰ)得,當(dāng)時(shí),函數(shù)無(wú)極值點(diǎn). 、時(shí),有兩個(gè)相同的解,時(shí),,時(shí),,時(shí),函數(shù)在上無(wú)極值點(diǎn). 、郛(dāng)時(shí),有兩個(gè)不同解,,, 時(shí),,,即,.時(shí),,隨的變化情況如下表: 由此表可知:時(shí),有惟一極小值點(diǎn),當(dāng)時(shí),,,此時(shí),,隨的變化情況如下表: 由此表可知:時(shí),有一個(gè)極大值和一個(gè)極小值點(diǎn);綜上所述:時(shí),有惟一最小值點(diǎn); 時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn); 時(shí),無(wú)極值點(diǎn). (Ⅲ)當(dāng)時(shí),函數(shù), 令函數(shù),則.當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,又. 時(shí),恒有,即恒成立. 故當(dāng)時(shí),有. 對(duì)任意正整數(shù)取,則有. 所以結(jié)論成立. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=x2+mx(m∈R),則下列命題中的真命題是 ( ).
A.任意m∈R,使y=f(x)都是奇函數(shù)
B.存在m∈R,使y=f(x)是奇函數(shù)
C.任意m∈R,使y=f(x)都是偶函數(shù)
D.存在m∈R,使y=f(x)是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=x2-1+cosx(a>0).
(1)當(dāng)a=1時(shí),證明:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若y=f(x)在(0,+∞)上是單調(diào)增函數(shù),求正數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
對(duì)實(shí)數(shù)a和b,定義運(yùn)算“⊕”:a⊕b=設(shè)函數(shù)f(x)=(x2-2)⊕(x-x2),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)c的取值范圍是
A.(-∞,-2]∪ B.(-∞,-2]∪
C. ∪ D. ∪
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
、(12分)設(shè)函數(shù)f(x) = x2+bln(x+1),
(1)若對(duì)定義域的任意x,都有f(x)≥f(1)成立,求實(shí)數(shù)b的值;
(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍;
(3)若b=-1,證明對(duì)任意的正整數(shù)n,不等式成立;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:填空題
設(shè)函數(shù)f(x)=x2+3,對(duì)任意x∈[1,+∞),f()+m2f(x)≥f(x-1)+3f(m)恒成立,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com