【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)證明:.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1),分和兩種情況討論單調(diào)性即可;(2)法一:將不等式變形為,構(gòu)造函數(shù),證明即可;法二:將不等式變形為,分別設(shè),求導(dǎo)證明即可.
(1) ,
當(dāng)時(shí),,函數(shù)的單調(diào)增區(qū)間為,無(wú)減區(qū)間;
當(dāng)時(shí),,當(dāng),,單增區(qū)間為上增,單調(diào)減區(qū)間為上遞減。
(2)解法1: ,即證,令,,,令,,
在,上單調(diào)遞增,,,故存在唯一的使得,)在上單調(diào)遞減,在上單調(diào)遞增,,,當(dāng)時(shí), , 時(shí),; 所以在上單調(diào)遞減,在上單調(diào)遞增,,得證.
解法2:要證: ,即證: ,令,,當(dāng)時(shí),,時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增, ; 令,,,當(dāng) 時(shí),,時(shí),; 所以在上單調(diào)遞增,在上單調(diào)遞減,,,,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①經(jīng)過(guò)定點(diǎn)的直線都可以用方程表示;
②經(jīng)過(guò)定點(diǎn)的直線都可以用方程表示;
③不經(jīng)過(guò)原點(diǎn)的直線都可以用方程表示;
④經(jīng)過(guò)任意兩個(gè)不同的點(diǎn)、的直線都可以用方程表示,
其中真命題的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,為的中點(diǎn).
(1)求證:∥平面;
(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)與兩定點(diǎn)連線的斜率之積為,記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),曲線上是否存在點(diǎn)使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說(shuō)法錯(cuò)誤的是( )
A. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為
B. 無(wú)論點(diǎn)在上怎么移動(dòng),都有
C. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有與相交于一點(diǎn),記為點(diǎn),且
D. 無(wú)論點(diǎn)在上怎么移動(dòng),異面直線與所成角都不可能是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列是等差數(shù)列,數(shù)列是各項(xiàng)都為正數(shù)的等比數(shù)列,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),,,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的兩個(gè)焦點(diǎn)為,,并且經(jīng)過(guò)點(diǎn).
(1)求雙曲線的方程;
(2)過(guò)點(diǎn)的直線與雙曲線有且僅有一個(gè)公共點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)令函數(shù),若時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:①命題“若,則”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對(duì)于命題使得,則為,均有.其中,真命題的個(gè)數(shù)是 ( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com