(本題滿分14分)
如圖,平面,四邊形是矩形,,與平面所成角是,點的中點,點在矩形的邊上移動.
(1)證明:無論點在邊的何處,都有;
(2)當(dāng)等于何值時,二面角的大小為
解:法一:(1)證明:,.

,

,∴     
,點的中點,
,.
.      
(2)過,連,又∵,
平面,
是二面角的平面角,    
      -------------------------------------------------------------------------- 9分
與平面所成角是,∴,-------------------------------- 10分
. ∴,,   -------------------------- 11分
設(shè),則,,
中,
.故。   ------------------ 14分
法二:(1)建立如圖所示空間直角坐標(biāo)系,則,
與平面所成角是,∴,
,
,,.   ------ 3分
設(shè),則
 .    --------------------------------6分
(2)設(shè)平面的法向量為,

得:,            ---------------------------------------------- 8分
而平面的法向量為,---------------------------------------------- 9分
∵二面角的大小是,
所以=,
,    ------------------- 11分
 或 (舍).
 , 故。              --------------------------------- 14分
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

. 下列說法中正確的是  (     )
A.經(jīng)過兩條平行直線,有且只有一個平面
B.如果兩條直線平行于同一個平面,那么這兩條直線平行
C.三點確定唯一一個平面
D.不在同一平面內(nèi)的兩條直線相互垂直,則這兩個平面也相互垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用符號表示“點A在直線l上,l在平面外”,正確的是(  )
A.Al, l B.Al, l
C.Al, l D.Al, l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,在正方體中,E、F分別是中點。
(Ⅰ)求證:;
(Ⅱ)求證:

(III)棱上是否存在點P使,若存在,確定點P位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知三棱錐P=ABC中,PA⊥PC,D為AB的中點,M為PB的中點,且AB=2PD.
(1)求證:DM//面PAC;
(2)找出三棱錐P—ABC中一組面與面垂直的位置關(guān)系,并給出證明(只需找到一組即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)本題共有2個小題,第1小題滿分5分,第2小題滿分7分.
如圖,在直三棱柱中,,,
(1)求三棱柱的表面積;
(2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直線B1C與平面ABC成30°角,求二面角B-B1C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在四面體中,,點分別是的中點. 求證:
(1)直線平面
(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有如下三個命題:
①分別在兩個平面內(nèi)的兩條直線一定是異面直線;
②垂直于同一個平面的兩條直線是平行直線;
③過平面的一條斜線有一個平面與平面垂直;
其中正確命題的個數(shù)為­­­­­­­­­­(   )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案