11.設(shè)$a=\frac{1}{ln10},b={(lge)^2},c=lg\sqrt{e}$,則有( 。
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

分析 利用對數(shù)的性質(zhì)及對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵$a=\frac{1}{ln10}=lge,\;b={(lge)^2},\;c=lg\sqrt{e}=\frac{1}{2}lge$,
又0=lg1<lge<lg$\sqrt{10}$=$\frac{1}{2}$,
∴a>c>b.
故選:C.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)的性質(zhì)及對數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線x2+y2-6x=0(y>0)與直線y=k(x+2)有公共點,則k的取值范圍是( 。
A.k∈[-$\frac{3}{4}$,0)B.k∈(0,$\frac{4}{3}$]C.k∈(0,$\frac{3}{4}$]D.k∈[-$\frac{3}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱錐P-ABC中,△PAB是正三角形,在△ABC中,AB⊥BC,且D、E分別為AB、AC的中點.   
(1)求證:DE∥平面PBC;
(2)求異面直線AB與PE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線$\frac{1}{4}{y^2}=x$的焦點為F,點A(2,2),點P在拋物線上,則|PA|+|PF|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知前n項和Sn的正項數(shù)列{an}滿足lgan+1=$\frac{1}{2}$(lgan+lgan+2),且a3=4,S2=3,則(  )
A.2Sn=an+1B.Sn=2an+1C.2Sn=an-1D.Sn=2an-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知${2^{\frac{1}{x}}}≥{x^a}$對任意的x∈(0,1)都成立,則實數(shù)a的最小值為( 。
A.-eB.-eln2C.$-\frac{1}{e}$D.$-\frac{1}{eln2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)y=aex+3x(a∈R,x∈R)有大于零的極值點,則實數(shù)a的取值范圍是( 。
A.-3<a<0B.a>-3C.a<-3D.$a>-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.整數(shù)p>1.證明:當(dāng)x>-1且x≠0時,(1+x)p>1+px.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為(  )
A.$\frac{22}{27}$B.2C.-1D.-4

查看答案和解析>>

同步練習(xí)冊答案