【題目】已知命題p:x∈[1,2],x2﹣a≥0,命題q:x0∈R,x02+2ax0+2﹣a=0;若命題¬(p∧q)是假命題,求實數(shù)a的取值范圍.

【答案】解:p真,則a≤1, q真,則△=4a2﹣4(2﹣a)≥0,
即a≥1或a≤﹣2,
∵命題¬(p∧q)是假命題,
∴p∧q為真命題,
∴p,q均為真命題,
,
∴a≤﹣2,或a=1
∴實數(shù)a的取值范圍為a≤﹣2,或a=1
【解析】先求出命題p,q為真命題時a的范圍,據(jù)復合函數(shù)的真假得到p,q中均為真,即可求出a的范圍.
【考點精析】利用復合命題的真假對題目進行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知P是邊長為2的正三角形ABC邊BC上的動點,則 的值(
A.是定值6
B.最大值為8
C.最小值為2
D.與P點位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自201611日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得要不要再生一個,生二孩能休多久產(chǎn)假等問題成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26

1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?

2)假設從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.

求兩種安排方案休假周數(shù)和不低于32周的概率;

如果用表示兩種方案休假周數(shù)之和.求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個極值點x1 , x2(x1<x2)( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|0≤x≤6},B={y|0≤y≤2},從A到B的對應法則f不是映射的是(
A.f:x
B.f:x
C.f:x
D.f:x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關(guān)于點 對稱
B.關(guān)于x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個不同的零點.

1)求的取值范圍;

2)記兩個零點分別為,,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求滿足下列條件的直線方程:
(1)求經(jīng)過直線l1:x+3y﹣3=0和l2:x﹣y+1=0的交點,且平行于直線2x+y﹣3=0的直線l的方程;
(2)已知直線l1:2x+y﹣6=0和點A(1,﹣1),過點A作直線l與l1相交于點B,且|AB|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從2009年參加奧運知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示.觀察圖形,估計這次奧運知識競賽的及格率(大于或等于60分為及格)為

查看答案和解析>>

同步練習冊答案