與拋物線相切傾斜角為的直線L與x軸和y軸的交點(diǎn)分別是A和B,那么過A、B兩點(diǎn)的最小圓截拋物線的準(zhǔn)線所得的弦長(zhǎng)為
A.4 B.2 C.2 D.
C
【解析】
試題分析:的準(zhǔn)線方程為,x=-2設(shè)切線方程為,代入整理得,,則,所以b=-2,切線方程為,A(-2,0),B(0,-2),過A、B兩點(diǎn)的最小圓即以AB為直徑的圓,所以截拋物線的準(zhǔn)線所得的弦長(zhǎng)為2.選C。
考點(diǎn):本題主要考查直線與拋物線的位置關(guān)系,圓的概念及其方程。
點(diǎn)評(píng):中檔題,由于直線與拋物線相切,因此,兩方程聯(lián)立后所得一元二次方程根的判別式為0,從而可得切線方程。認(rèn)識(shí)到過A、B兩點(diǎn)的最小圓即以AB為直徑的圓,是又一關(guān)鍵點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線經(jīng)過點(diǎn)A(2,1),過A作傾斜角互補(bǔ)的兩條不同直線.
(Ⅰ)求拋物線的方程及準(zhǔn)線方程;
(Ⅱ)當(dāng)直線與拋物線相切時(shí),求直線與拋物線所圍成封閉區(qū)域的面積;
(Ⅲ)設(shè)直線分別交拋物線于B,C兩點(diǎn)(均不與A重合),若以線段BC為直徑的圓與拋物線的準(zhǔn)線相切,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線經(jīng)過點(diǎn)A(2,1),過A作傾斜角互補(bǔ)的兩條不同直線.
(Ⅰ)求拋物線的方程及準(zhǔn)線方程;
(Ⅱ)當(dāng)直線與拋物線相切時(shí),求直線與拋物線所圍成封閉區(qū)域的面積;
(Ⅲ)設(shè)直線分別交拋物線于B,C兩點(diǎn)(均不與A重合),若以線段BC為直徑的圓與拋物線的準(zhǔn)線相切,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年湖南省長(zhǎng)沙市高考模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
與拋物線相切傾斜角為的直線與軸和軸的交點(diǎn)分別是A和B,那么過A、B兩點(diǎn)的最小圓截拋物線的準(zhǔn)線所得的弦長(zhǎng)為
A.4 B.2 C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三上學(xué)期第一次月考數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
已知曲線經(jīng)過點(diǎn)A(2,1),過A作傾斜角互補(bǔ)的兩條不同直線.
(Ⅰ)求拋物線的方程及準(zhǔn)線方程;
(Ⅱ)當(dāng)直線與拋物線相切時(shí),求直線與拋物線所圍成封閉區(qū)域的面積;
(Ⅲ)設(shè)直線分別交拋物線于B,C兩點(diǎn)(均不與A重合),若以線段BC為直徑的圓與拋物線的準(zhǔn)線相切,求直線BC的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com