【題目】已知直線l過點P(3,4)

(1)它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.

(2)若直線l軸,軸的正半軸分別交于點,求的面積的最小值.

【答案】(1)直線l的方程為:;(2)24.

【解析】

(1)當(dāng)直線過原點時,符合題意,求出斜率即可得出;當(dāng)直線不過原點時,由于它在y軸上的截距是在x軸上截距的2倍,可設(shè)直線l的方程為截距式,把點P的坐標(biāo)代入即可

(2)設(shè)直線l的方程為截距式,由直線l過點P(3,4)可得方程,利用基本不等式即可得出ab的最小值,進(jìn)而得到三角形AOB的面積的最小值.

1)①當(dāng)直線l過原點時,符合題意,斜率

直線方程為,即;

當(dāng)直線l不過原點時,它在y軸上的截距是在x軸上截距的2倍,

可設(shè)直線l的方程為:

直線l過點P(3,4),,解得a=5.

直線l的方程為:,即

綜上所述,所求直線l方程為

(2)設(shè)直線l的方程為

由直線l過點P(3,4)得:

,化為

當(dāng)且僅當(dāng)a=6,b=8時取等號.

的面積

其最小值為24.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥平面ABCD,E,F分別為線段AB,BC的中點.

1)線段AP上一點M,滿足,求證:EM∥平面PDF;

2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市交通管理部門為了解市民對機動車“單雙號限行”的態(tài)度,隨機采訪了100名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計,得到了如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

15

有私家車

45

合計

100

已知在被采訪的100人中隨機抽取1人且抽到“贊同限行”者的概率是.

(1)請將上面的列聯(lián)表補充完整;

(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過0.10的前提下認(rèn)為“對限行的態(tài)度與是否擁有私家車有關(guān)”;

(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

附:參考公式:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.10

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的矩形中, ,點邊上異于, 兩點的動點,且 為線段的中點,現(xiàn)沿將四邊形折起,使得的夾角為,連接, .

(1)探究:在線段上是否存在一點,使得平面,若存在,說明點的位置,若不存在,請說明理由;

(2)求三棱錐的體積的最大值,并計算此時的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若,且存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;

(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點, ,過線段的中點作軸的垂線分別交 于點, ,證明: 在點處的切線與在點處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某教育主管部門到一所中學(xué)檢查高三年級學(xué)生的體質(zhì)健康情況,從中抽取了名學(xué)生的體質(zhì)測試成績,得到的頻率分布直方圖如圖1所示,樣本中前三組學(xué)生的原始成績按性別分類所得的莖葉圖如圖2所示.

(Ⅰ)求, 的值;

(Ⅱ)估計該校高三學(xué)生體質(zhì)測試成績的平均數(shù)和中位數(shù);

(Ⅲ)若從成績在的學(xué)生中隨機抽取兩人重新進(jìn)行測試,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個偶數(shù)2,4,6;再染6后面最鄰近的5個連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個連續(xù)奇數(shù)29,31,…,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,……,則在這個紅色子數(shù)列中,由1開始的第2019個數(shù)是( )

A. 3972 B. 3974 C. 3991 D. 3993

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形與矩形所在平面相互垂直, , , .

(Ⅰ)求證: 平面;

(Ⅱ)求四棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案