曲線y=x2與直線y=x所圍成的平面圖形繞x軸轉(zhuǎn)一周得到旋轉(zhuǎn)體的體積為
 
考點(diǎn):定積分
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出曲線y=x2與直線y=x交點(diǎn)O、A的坐標(biāo),結(jié)合旋轉(zhuǎn)體的積分計(jì)算公式,可得所求旋轉(zhuǎn)體的體積等于函數(shù)y=π(x2-x4)在[0,1]上的積分值,再用定積分計(jì)算公式加以計(jì)算即可得到該旋轉(zhuǎn)體的體積.
解答: 解:∵曲線y=x2與直線y=x交于點(diǎn)O(0,0)和A(1,0)
∴根據(jù)旋轉(zhuǎn)體的積分計(jì)算公式,可得
該旋轉(zhuǎn)體的體積為V=
1
0
π(x2-x4)dx
=π(
1
3
x3-
1
5
x5)|
 
1
0

=π[(
1
3
×13-
1
5
×15)-(
1
3
×
03-
1
5
×05)]=
15

故答案為:
15
點(diǎn)評(píng):本題給出曲線y=x2與直線y=x所圍成的平面圖形,求該圖形繞x軸轉(zhuǎn)一周得到旋轉(zhuǎn)體的體積.著重考查了利用定積分公式計(jì)算由曲邊圖形旋轉(zhuǎn)而成的幾何體體積的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+3x2-9x+1.
(1)求f(x)的極大值;
(2)若f(x)在[k,2]上的最大值為28,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)(1+i)(1+mi)是實(shí)數(shù),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+1,x≥0
|x|,       x<0
,則f(f(-2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
AM
=
1
4
AB
+
3
4
AC
,則△ABM與△ABC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x      (x≥2)
f(x+2)(x<2)
,則f(log45)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是
 

①y=sinx+
4
sinx
(0<x≤
π
2
)的最小值為4
②y=
x2+5
x2+4
的最小值為2
③y=ex+e-x的最小值為2
④x>0,y>0,且x+y=20,則m=lgx+lgy的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體AC1各棱所在直線中,與棱AD所在直線互為異面直線的有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=2n-n-1(n∈N+),則{an}的通項(xiàng)為an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案