19.已知直線l1:(a-2)x+4y=5-3a與直線l2:2x+(a+7)y=8垂直,則a=( 。
A.-4或-1B.4C.7或-2D.-4

分析 利用兩條直線相互垂直與斜率的關(guān)系即可得出.

解答 解:∵直線l1:(a-2)x+4y=5-3a與直線l2:2x+(a+7)y=8互相垂直,
∴2(a-2)+4×(a+7)=0,即6a+24=0,
解得a=-4,
故選:D.

點評 本題考查了兩條直線相互垂直與斜率的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知棱長為1的正方體ABCD-A1B1C1D1中,下列命題不正確的是(  )
A.平面ACB1∥平面A1C1D,且兩平面的距離為$\frac{{\sqrt{3}}}{3}$
B.點P在線段AB上運動,則四面體PA1B1C1的體積不變
C.與所有12條棱都相切的球的體積為$\frac{{\sqrt{2}}}{3}$π
D.M是正方體的內(nèi)切球的球面上任意一點,N是△AB1C外接圓的圓周上任意一點,則|MN|的最小值是$\frac{{\sqrt{3}-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)函數(shù),f(0)=1,且f′(x)-2f(x)=0,則f(x)>e的解集為($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的值域:
(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$;
(2)y=$\sqrt{-2{x}^{2}+x+3}$;
(3)y=x+$\frac{1}{x}$+1;
(4)y=x-$\sqrt{1-2x}$;
(5)y=x+$\sqrt{4-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求證:
(1)log${\;}_{{a}^{n}}$bn=logab;
(2)logab=$\frac{1}{lo{g}_a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在△ABC中,已知點D在邊BC上,且AD⊥AC,AB=3$\sqrt{2}$,AD=3,sin∠BAC=$\frac{2\sqrt{2}}{3}$.
(1)求BD的長;
(2)求sin∠ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$≥x2-x-11恒成立,則實數(shù)x的取值范圍是( 。
A.[-3,4]B.[0,2]C.[-$\frac{3}{2}$,$\frac{5}{2}$]D.[-4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=asinx+cosx關(guān)于直線x=$\frac{π}{4}$對稱,則a的取值集合為( 。
A.{1}B.{-1,1}C.{-1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知復(fù)數(shù)z=(a+2i)(1-bi),其中i是虛數(shù)單位.
(1)若z=5-i,求a,b的值;
(2)若z的實部為2,且a>0,b>0,求證:$\frac{2}{a}$+$\frac{1}$≥4.

查看答案和解析>>

同步練習(xí)冊答案