已知點(diǎn)P是拋物線x2=4y上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作圓x2+(y-4)2=1的兩條切線,切點(diǎn)分別為M,N,則線段MN長(zhǎng)度的最小值是
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先確定MN=2ME=
2PM
PO
=2
1-
1
PO2
,可得PO值最小時(shí),MN取最小值,進(jìn)而求出PO最小值即可.
解答: 解:設(shè)圓心為O(0,4),PO與MN交于E,則PO2=PM2+1,MN=2ME=
2PM
PO
=2
1-
1
PO2

∴當(dāng)PO值最小時(shí),MN取最小值;設(shè)P(x,y),則PO2=x2+(y-4)2=y2-4y+16=(y-2)2+12
當(dāng)y=2時(shí),PO2有最小值12,
∴線段MN長(zhǎng)度的最小值是2
1-
1
12
=
33
3

故答案為:
33
3
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查計(jì)算能力,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2+(k-2)x+5-k=0的兩根都大于2,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=4,|
b
|=8,
a
b
的夾角為120°,則|4
a
-2
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某縣電業(yè)局對(duì)農(nóng)村進(jìn)行農(nóng)網(wǎng)改造后,其用電收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用電不超過(guò)60度時(shí),每度為0.47元,當(dāng)用電超過(guò)60度時(shí),超過(guò)部分每度0.52元,某月甲、乙兩用戶共交電費(fèi)y元,已知甲、乙兩用戶該月用電量分別為2x,3x.
(1)寫(xiě)出y關(guān)于x的函數(shù)解析式;
(2)若甲、乙兩用戶該月共交電費(fèi)77.2元,分別求出甲、乙兩用戶該月的用電量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l與直線x+y=1=0垂直,其縱截距b=-
3
,橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且與直線l相切.
(1)求直線l,橢圓C的方程;
(2)過(guò)F1作兩條互相垂直的直線l1、l2,與橢圓分別交于P、Q及M、N,求四邊形PMQN面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ex-ax-a.
(Ⅰ)若a=1,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥0對(duì)一切x≥-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x;當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)為P(3,4)且過(guò)點(diǎn)A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)在圖中的直角坐標(biāo)系中畫(huà)出函數(shù)f(x)的圖象;
(3)寫(xiě)出函數(shù)f(x)的值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)實(shí)數(shù)a,b定義運(yùn)算“?”:a?b=
a(b+1),a≥b
b(a+1),a<b
,則(2tan
4
)?cos
3
+lg100?(
1
3
-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A.∠B.∠C的對(duì)邊分別是a、b、c,若a=1,b=
3
,∠A=30°,則△ABC的面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案