已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求證:
a
b

(2)若存在不等于0的實數(shù)k和t,使
x
=
a
+(t2+3)
b
,
y
=(-k
a
+t
b
),滿足
x
y
,試求此時
k+t2
t
的最小值.
分析:(1)利用向量的數(shù)量積公式求出
a
b
,利用三角函數(shù)的誘導(dǎo)公式化簡得數(shù)量積為0,利用向量垂直的充要條件得證.
(2)利用向量垂直的充要條件列出方程,利用向量的運算律化簡方程,將方程中的k用t表示,代入
k+t2
t
,利用二次函數(shù)最值的求法求出最小值.
解答:解:(1)證明∵
a
b
=cos(-θ)•cos(
π
2
-θ)+sin(-θ)•sin(
π
2
-θ)
=sinθcosθ-sinθcosθ=0.
a
b

(2)解由
x
y
x
y
=0,
即[
a
+(t2+3)
b
]•(-k
a
+t
b
)=0,
∴-k
a
2
+(t3+3t)
b
2
+[t2-k(t+3)]
a
b
=0,
∴-k|
a
|
2
+(t3+3t)|
b
|
2
=0.
|
a
|
2
=1,|
b
|
2
=1,
∴-k+t3+3t=0,
∴k=t3+3t.
k+t2
t
=
t3+t2+3t
t
=t2+t+3=(t+
1
2
)2
2+
11
4

故當(dāng)t=-
1
2
時,
k+t2
t
有最小值
11
4
點評:本題考查向量垂直的充要條件、向量的運算律、二次函數(shù)最值的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
a
b
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),則|
a
+
b
|最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),則|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案