【題目】已知橢圓的右頂點為,上頂點為,右焦點為.連接并延長與橢圓相交于點,且
(Ⅰ)求橢圓的方程;
(Ⅱ)設經(jīng)過點的直線與橢圓相交于不同的兩點,直線分別與直線相交于點,點.若的面積是的面積的2倍,求直線的方程.
【答案】(1).
(2)或.
【解析】分析:(1)根據(jù)橢圓的上頂點坐標,求出的值,由已知條件求出C點坐標的表達式,代入橢圓方程中,求出的值,這樣求出橢圓的方程;(2)設直線MN的方程為,設,聯(lián)立直線與橢圓方程,得,求出的表達式,直線AM的方程為 ,直線AN的方程為,求出P,Q點的縱坐標的表達式,面積的表達式,根據(jù)兩個三角形面積之間的關系,求出的值,得直線的方程。
詳解: (Ⅰ)∵橢圓的上頂點為,∴
設.∵,∴.∴點.
將點的坐標代入中,得.∴
又由,得.
∴橢圓的方程為
(Ⅱ)由題意,知直線的斜率不為0.故設直線的方程為.
聯(lián)立,消去,得
設,.
由根與系數(shù)的關系,得,.
∴.
直線的方程為,直線的方程為
令,得.同理.
∴
.
故
∴,.
∴直線的方程為或
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點為橢圓上一點.
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線,經(jīng)過橢圓的右焦點,與橢圓交于四點,求四邊形面積的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京101中學校園內有一個“少年湖”,湖的兩側有一個音樂教室和一個圖書館,如圖,若設音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學選定了與A,B不共線的C處,構成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,∠B,BC;③測量∠C,AC,BC;④測量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據(jù)此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數(shù)據(jù):,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列命題的真假.
(1)過一條直線的平面有無數(shù)多個;
(2)如果兩個平面有兩個公共點,那么它們就有無數(shù)多個公共點,并且這些公共點都在直線上;
(3)兩個平面的公共點組成的集合,可能是一條線段;
(4)兩個相交平面可能存在不在一條直線上的3個公共點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院一天派出醫(yī)生下鄉(xiāng)醫(yī)療,派出醫(yī)生人數(shù)及其概率如下:
醫(yī)生人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.2 | 0.2 | 0.04 |
求:(1)派出醫(yī)生至多2人的概率;
(2)派出醫(yī)生至少2人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com