用反證法證明命題“若a、b、c∈(0,1),則(1-a)b,(1-b)c,(1-c)a不能都大于
1
4
”時(shí),假設(shè)( 。
A、(1-a)b,(1-b)c,(1-c)a都不大于
1
4
B、(1-a)b,(1-b)c,(1-c)a都小于或等于
1
4
C、(1-a)b,(1-b)c,(1-c)a都大于
1
4
D、(1-a)b,(1-b)c,(1-c)a不能都小于或等于
1
4
考點(diǎn):反證法與放縮法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:“不能都大于”的否定是“都大于”,從而得出答案.
解答: 解:用反證法證明命題“若a、b、c∈(0,1),則(1-a)b,(1-b)c,(1-c)a不能都大于
1
4
”,
可假設(shè)為:(1-a)b,(1-b)c,(1-c)a都大于
1
4

故選:C.
點(diǎn)評(píng):本題考查了反證法,考查了命題的否定,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=
2
cosx的圖象,只需將函數(shù)y=
2
cos(2x+
π
4
)的圖象上所有的點(diǎn)( 。
A、橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)
π
4
個(gè)單位長(zhǎng)度
B、橫坐標(biāo)縮短到原來(lái)的
1
2
倍(縱坐標(biāo)不變),再向右平行移動(dòng)
π
4
個(gè)單位長(zhǎng)度
C、橫坐標(biāo)縮短到原來(lái)的
1
2
倍(縱坐標(biāo)不變),再向左平行移動(dòng)
π
8
個(gè)單位長(zhǎng)度
D、橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向右平行移動(dòng)
π
4
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)當(dāng)m<
1
2
時(shí),化簡(jiǎn)集合B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍;
(3)若∁RA∩B中只有一個(gè)整數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知
cosA
cosB
=
b
a
,且∠C=
2
3
π

(Ⅰ)求角A,B的大;
(Ⅱ)設(shè)函數(shù)f(x)=sin(x+A)+cosx,求f(x)在[-
π
6
,
π
3
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,測(cè)量河對(duì)岸的塔的高度AB,可以選擇與B在同一水平面內(nèi)的兩個(gè)點(diǎn)C、D.測(cè)得由C望A的仰角∠ACB=45°,方位角∠BCD═60°、∠BDC=75°,又測(cè)得C、D相距20米.試求塔的高度AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若an=
1
n2+n
,則S10=(  )
A、1
B、
11
12
C、
10
11
D、
9
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3-
1
2
x2
-2x+5,當(dāng)x∈[-2,2]時(shí),f(x)-m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-a
(x-1)2
(x∈(1,+∞))
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[2,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)運(yùn)行程序框圖,則輸出的S=( 。
A、7B、11C、14D、25

查看答案和解析>>

同步練習(xí)冊(cè)答案