如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關系是(  )

A.相交             B.平行             C.異面             D.以上都有可能

 

【答案】

B

【解析】

試題分析:因為G1,G2分別是△SAB和△SAC的重心,所以,所以。又因為M、N分別為AB、AC的中點,所以MN//BC,所以。

考點:線面平行的判定定理;線面平行的性質定理;公理4;重心的性質。

點評:我們要掌握重心性質:若G1為△SAB的重心,M為AB中點,則。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在三棱錐S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求證:AB⊥BC;
(2)若設二面角S-BC-A為45°,SA=BC,求二面角A-SC-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點.
(Ⅰ)求點B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•杭州模擬)如圖,在三棱錐S-ABC中,SA=SC=AB=BC,則直線SB與AC所成角的大小是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都一模)如圖,在三棱錐S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,點P是SC的中點,則異面直線SA與PB所成角的正弦值為( 。

查看答案和解析>>

同步練習冊答案