已知不等式xy≤ax2+2y2,若對任意x∈[1,2]且y∈[2,3],該不等式恒成立,則實(shí)數(shù)a的取值范圍是( 。
分析:將a分離出來得a≥
y
x
-2(
y
x
2,然后根據(jù)x∈[1,2],y∈[2,3]求出
y
x
的范圍,令t=
y
x
,則a≥t-2t2在[1,3]上恒成立,利用二次函數(shù)的性質(zhì)求出t-2t2的最大值,即可求出a的范圍.
解答:解:由題意可知:不等式xy≤ax2+2y2對于x∈[1,2],y∈[2,3]恒成立,
即:a≥
y
x
-2(
y
x
2,對于x∈[1,2],y∈[2,3]恒成立,
令t=
y
x
,根據(jù)右圖可知則1≤t≤3,
∴a≥t-2t2在[1,3]上恒成立,
∵y=-2t2+t=-2(t-
1
4
2+
1
8
,1≤t≤3,
∴ymax=-1,
∴a≥-1
故選A.
點(diǎn)評:本題考查的是不等式與恒成立的綜合類問題.在解答的過程當(dāng)中充分體現(xiàn)了分離參數(shù)的方法、恒成立的思想以及整體代換的技巧.值得同學(xué)們體會與反思.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R,且x>0),對于定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),并且x>1時(shí),f(x)>0恒成立.
(1)求f(1);   
(2)證明方程f(x)=0有且僅有一個(gè)實(shí)根;
(3)若x∈[1,+∞)時(shí),不等式f(
x2+2x+ax
)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且9x+y=xy,不等式ax+y≥25對任意正實(shí)數(shù)x,y恒成立,則正實(shí)數(shù)a的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,+∞)上的函數(shù)f(x),對于定義域內(nèi)任意的x、y恒有f(xy)=f(x)+f(y),且當(dāng)f(x),x>1時(shí)f(x)<0恒成立.
(1)求f(1);
(2)證明:函數(shù)f(x),f(x)在(0,+∞)是減函數(shù);
(3)若x∈[1,+∞)時(shí),不等式f(
x2+2x+ax
)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且9x+y=xy,不等式ax+y≥25對任意正實(shí)數(shù)x,y恒成立,則正實(shí)數(shù)a的最小值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知a,b,x,y都是正數(shù),且a+b=1,求證:(ax+by)(bx-ay)≥xy.

查看答案和解析>>

同步練習(xí)冊答案