11.某同學(xué)參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得-100分. 假設(shè)這名同學(xué)每題回答正確的概率均為0.8,且各題回答正確與否相互之間沒有影響.
(1)求這名同學(xué)回答這三個問題的總得分X的分布列和數(shù)學(xué)期望E(X);
(2)求這名同學(xué)總得分(不為負(fù)分即X≥0)的概率.

分析 (1)由題意知X的可能取值為-300,-100,100,300,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望E(X).
(2)由X的分布列能求出這名同學(xué)總得分(不為負(fù)分即X≥0)的概率.

解答 解:(1)由題意知X的可能取值為-300,-100,100,300,
P(X=-300)=0.23=0.008,
P(X=-100)=${C}_{3}^{1}•0.8•0.{2}^{2}$=0.096,
P(X=100)=${C}_{3}^{2}•0.{8}^{2}•0.2$=0.384,
P(X=300)=0.83=0.512,
∴X的分布列為:

 X-300-100 100 300
 P 0.008 0.096 0.384 0.512
E(X)=-300×0.008+(-100)×0.096+100×0.384+300×0.512=180.
(2)這名同學(xué)總得分(不為負(fù)分即X≥0)的概率:
P=P(X=100)+P(X=300)=0.384+0.512=0.896.

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意二項分布的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且a:b:c=2:3:4,則△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的虛軸長為2$\sqrt{2}$,點M(2,1)在C上,平行于OM的直線l交橢圓C于不同的兩點A,B.
(1)求橢圓C的方程;
(2)證明:直線MA,MB與x軸總圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=|x-1|-2|x+a|.
(1)當(dāng)a=1時,求不等式f(x)>1的解集;
(2)若不等式f(x)>0,在x∈[2,3]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對于一組向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{{a}_{p}}$(p∈{1,2,3,…,n},使得|$\overrightarrow{{a}_{p}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{p}}$|,那么稱$\overrightarrow{{a}_{p}}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{{a}_{n}}$=(n,x+n)(n∈N*),若$\overrightarrow{{a}_{3}}$是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,求實數(shù)x的取值范圍;
(2)若$\overrightarrow{{a}_{n}}$=(($\frac{1}{3}$)n-1•(-1)n(n∈N*),向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是否存在“h向量”?給出你的結(jié)論并說明理由;
(3)已知$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$均是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,其中$\overrightarrow{{a}_{1}}$=(sinx,cosx),$\overrightarrow{{a}_{2}}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點列Q1.Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點,Q2為$\overrightarrow{{a}_{3}}$的位置向量的終點,且Q2k+1與Q2k關(guān)于點Q1對稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點Q2對稱,求|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)為R上的偶函數(shù),且在[0,+∞)內(nèi)是增函數(shù),又f(2)=0,則 f(x)<0的解集為(  )
A.(-2,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,如果輸入的a=1,b=1,那么輸出的值等于( 。
A.21B.34C.55D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分圖象如圖所示,則f(x)=sin($\frac{π}{4}$x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下面的表述:
①6=p;   ②a=3×5+2;   ③b+3=5;   ④p=((3x+2)-4)x+3;⑤a=a3;  ⑥x,y,z=5;   ⑦ab=3;     ⑧x=y+2+x.其中是賦值語句的序號有②④⑤⑧.(注:要求把正確的表述全填上)

查看答案和解析>>

同步練習(xí)冊答案