【題目】已知動圓恒過點,且與直線相切.

1)求圓心的軌跡的方程;

2)設(shè)是軌跡上橫坐標為2的點,的平行線交軌跡,兩點,交軌跡處的切線于點,問:是否存在實常數(shù)使,若存在,求出的值;若不存在,說明理由.

【答案】1;(2)存在,.

【解析】

1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點的坐標,即可求得方程;

2)由拋物線方程求得點的坐標,設(shè)出直線的方程,利用導(dǎo)數(shù)求得點的坐標,聯(lián)立直線的方程和拋物線方程,結(jié)合韋達定理,求得,進而求得之間的大小關(guān)系,即可求得參數(shù).

1)由題意得,點與點的距離始終等于點到直線的距離,

由拋物線的定義知圓心的軌跡是以點為焦點,直線為準線的拋物線,

,.∴圓心的軌跡方程為.

2)因為是軌跡上橫坐標為2的點,

由(1)不妨取,所以直線的斜率為1.

因為,所以設(shè)直線的方程為,.

,得,則在點處的切線斜率為2

所以在點處的切線方程為.

所以,

所以.

消去,

,得.

設(shè),

.

因為點,,在直線上,

所以,,

所以

,

所以.

故存在,使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.

1)當(dāng)時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;

2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間與極值.

(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面是邊長為的菱形,.

1)證明:平面平面;

2)若,是等邊三角形,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是( )

A. 從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;

B. 2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;

C. 2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番 ;

D. 為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為,,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切,點在橢圓上,,

1)求橢圓的方程;

2)若直線與橢圓交于兩點,點,若,求斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)xlnxg(x)x2ax.

1)求函數(shù)f(x)在區(qū)間[t,t1](t0)上的最小值m(t)

2)令h(x)g(x)f(x),A(x1,h(x1))B(x2,h(x2))(x1x2)是函數(shù)h(x)圖像上任意兩點,且滿足1,求實數(shù)a的取值范圍;

3)若x(0,1],使f(x)≥成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學(xué)、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計入高考總分.相應(yīng)地,高校在招生時可對特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級有學(xué)生1200人,現(xiàn)從中隨機抽取40人進行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計表:

序號

選科情況

序號

選科情況

序號

選科情況

序號

選科情況

1

134

11

236

21

156

31

235

2

235

12

234

22

235

32

236

3

235

13

145

23

245

33

235

4

145

14

135

24

235

34

135

5

156

15

236

25

256

35

156

6

245

16

236

26

156

36

236

7

256

17

156

27

134

37

156

8

235

18

236

28

235

38

134

9

235

19

145

29

246

39

235

10

236

20

235

30

156

40

245

1)雙超中學(xué)規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當(dāng)且僅當(dāng)一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學(xué)高一年級現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?

2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學(xué)高一新生中隨機抽取3人,設(shè)具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.

1)確定的位置(需要說明理由),并證明:平面平面.

2)與側(cè)面平行的平面與棱,,分別交于,,求四面體的體積的最大值.

查看答案和解析>>

同步練習(xí)冊答案