6.已知數(shù)列{an}是各項均為正值的等比數(shù)列,且a4a12+a3a5=15,a4a8=5,則a4+a8=(  )
A.15B.$\sqrt{5}$C.5D.25

分析 推導(dǎo)出a4a8=5,${{a}_{8}}^{2}+{{a}_{4}}^{2}$=15,a4>0,a8>0,由此能求出a4+a8

解答 解:∵數(shù)列{an}是各項均為正值的等比數(shù)列,且a4a12+a3a5=15,a4a8=5,
∴${{a}_{8}}^{2}+{{a}_{4}}^{2}$=15,a4>0,a8>0,
∴a4+a8=$\sqrt{({a}_{4}+{a}_{8})^{2}}$=$\sqrt{{{a}_{4}}^{2}+{{a}_{8}}^{2}+2{a}_{4}{a}_{8}}$=$\sqrt{15+10}$=5.
故選:C.

點評 本題考查等比數(shù)列的中兩項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{x-2,x≥10}\\{f[f(x+6)],x<10}\end{array}}$則f(6)=( 。
A.10B.-10C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.乒乓球是我國的國球,在2016年巴西奧運會上盡領(lǐng)風(fēng)騷,包攬該項目全部金牌,現(xiàn)某市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同,甲家每張球臺每小時6元;乙家按月計費,一個月中20小時以內(nèi)(含20小時)每張球臺90元,超過20小時的部分,每張球臺每小時2元,某公司準(zhǔn)備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于12小時,也不超過30小時.
(1)設(shè)在甲家租一張球臺開展活動x小時收費為f(x)元(12≤x≤30),在乙家租一張球臺開展活動x小時的收費為g(x)元(12≤x30),試求f(x)與g(x)的解析式;
(2)選擇哪家比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2x2+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若g(x)=f(x)-4x+2存在兩個極值點,且x0是函數(shù)g(x)的極小值點,求證:$g({x_0})>\frac{1}{2}-ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.$\int_{-1}^1{({|x|+sinx})}$dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{m}{x}+lnx$,g(x)=x3+x2-x.
(Ⅰ)若m=3,求f(x)的極值;
(Ⅱ)若對于任意的s,$t∈[{\frac{1}{2}\;,\;\;2}]$,都有$f(s)≥\frac{1}{10}g(t)$,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z=(2-ai)(1+i)的實部為1,則實數(shù)a的值為(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2-4x-12<0},B={x|2x>log${\;}_{\sqrt{3}}$3},則A∩B等于(  )
A.($\frac{3}{2},6$)B.($\frac{3}{2},2$)C.(1,6)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在(0,2)上為增函數(shù)的是( 。
A.y=-3x+2B.y=$\frac{3}{x}$C.y=x2-4x+5D.y=3x2+8x-10

查看答案和解析>>

同步練習(xí)冊答案