1.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$+φ),φ∈(0,π)滿足f(|x|)=f(x),則φ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

分析 由條件可得f(x)為偶函數(shù),故有-$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,由此求得φ 的值.

解答 解:函數(shù)f(x)=3sin(2x-$\frac{π}{3}$+φ),φ∈(0,π)滿足f(|x|)=f(x),
∴f(x)為偶函數(shù),故有-$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,即 φ=kπ+$\frac{5π}{6}$,k∈Z.
當(dāng)k=0時(shí),φ=$\frac{5π}{6}$,
故選:C.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)、正弦函數(shù)的奇偶性,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(x∈R).
(Ⅰ)若函數(shù)y=f(x)在(0,+∞)上為增函數(shù),求a的取值范圍;
(Ⅱ)若a=1,當(dāng)x>1時(shí),求證:f(x)>x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=a(x-lnx)+$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=$\frac{1}{2}$時(shí),證明:f(x)>f′(x)+$\frac{5}{4}$對(duì)于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知變量S=sin$\frac{a-b}{3}$π,若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),則S≥0的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知圓C的極坐標(biāo)方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}}$)-4=0,則圓C的半徑為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=2-3Sn(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{an+bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知命題p1:函數(shù)y=2x-2-x在R上為增函數(shù),
p2:函數(shù)y=2x+2-x在R上為減函數(shù),則在命題
①p1∨p2②p1∧p2③(¬p1)∨p2④p1∧(¬p2)中真命題是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow a=(-1,1)$,向量$\overrightarrow b=(3,t)$,若$\overrightarrow b∥(\overrightarrow a+\overrightarrow b)$,則t=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知x>0,y>0,lg2x+lg4y=lg2,則$\frac{1}{x}+\frac{1}{y}$的最小值是$3+2\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案