若f(x)=ax3+x恰有三個(gè)單調(diào)區(qū)間,則a的取值范圍為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)區(qū)間和導(dǎo)數(shù)之間的關(guān)系,轉(zhuǎn)化為一元二次方程根的個(gè)數(shù)問題,即可得到結(jié)論.
解答: 解:∵f(x)=ax3+x,
∴f′(x)=3ax2+1,
若f(x)=ax3+x恰有三個(gè)單調(diào)區(qū)間,
則等價(jià)為f′(x)=3ax2+1有兩個(gè)不同的根,
即3a<0,解得a<0,
故答案為:a<0
點(diǎn)評:本題主要考查函數(shù)單調(diào)區(qū)間的應(yīng)用,利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間時(shí)關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=2px(p>0)的交點(diǎn)為A、B,A、B連線經(jīng)過拋物線的交點(diǎn)F,且線段AB的長等于雙曲線的虛軸長,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,1),且單位向量
b
a
的夾角為60°,則
b
的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρsin(θ+
π
3
)=0與曲線
x=
1
a
(t+
1
t
)
y=t-
1
t
(t為參數(shù))無交點(diǎn),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PD⊥正方形ABCD所在平面,PD=AD=1,則三棱錐P-ABC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在梯形ABCD中,AD∥BC,∠ABC=90°,AB=AD=1,BC=3,則
AB
CD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C的對邊分別是a,b,c,若a=4,b=5,△ABC的面積為5
3
,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則(1-i)(2+i)=(  )
A、-3-iB、3-i
C、-3+iD、3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線Γ:
x2
a2
-
y2
b2
=1(a,b>0),F(xiàn)1是雙曲線Γ的左焦點(diǎn),直線y=x交雙曲線Γ于P、Q兩點(diǎn),點(diǎn)M在雙曲線上且滿足MF1⊥x軸,若△MPQ是以點(diǎn)M為頂點(diǎn)的等腰三角形,則雙曲線Γ的離心率為(  )
A、
1+
3
2
B、1+
3
C、
1+
5
2
D、1+
5

查看答案和解析>>

同步練習(xí)冊答案