【題目】某班有50名學(xué)生,男女人數(shù)不相等。隨機(jī)詢問了該班5名男生和5名女生的某次數(shù)學(xué)測試成績,用莖葉圖記錄如下圖所示,則下列說法一定正確的是( )

A. 這5名男生成績的標(biāo)準(zhǔn)差大于這5名女生成績的標(biāo)準(zhǔn)差。

B. 這5名男生成績的中位數(shù)大于這5名女生成績的中位數(shù)。

C. 該班男生成績的平均數(shù)大于該班女生成績的平均數(shù)。

D. 這種抽樣方法是一種分層抽樣。

【答案】A

【解析】

根據(jù)莖葉圖的分別情況分別判斷即可.

5名男生成績的平均數(shù)為:,

5名女生成績的平均數(shù)為:

這5名男生成績的方差為 ,女生的方差為,男生方差大于女生方差,所以男生標(biāo)準(zhǔn)差大于女生標(biāo)準(zhǔn)差,所以A對(duì);

這5名男生成績的中位數(shù)是90, 5名女生成績的中位數(shù)93,所以B錯(cuò);

該班男生和女生成績的平均數(shù)可通過樣本估計(jì),但不能通過樣本計(jì)算得到平均數(shù)準(zhǔn)確值,所以C錯(cuò);

若抽樣方法是分層抽樣,因?yàn)槟猩坏龋苑謩e抽取的人數(shù)不等,所以D錯(cuò)。

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義域?yàn)?/span>的偶函數(shù),當(dāng)時(shí),,若關(guān)于的方程,,有且僅有5個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和直線,為曲線上一點(diǎn),為點(diǎn)到直線的距離且滿足.

(1)求曲線的軌跡方程;

(2)過點(diǎn)作曲線的兩條動(dòng)弦,若直線斜率之積為,試問直線是否一定經(jīng)過一定點(diǎn)?若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某漁業(yè)公司今年初用98萬元購進(jìn)一艘漁船進(jìn)行捕撈,第一年需要各種費(fèi)用12萬元,從第二年開始包括維修費(fèi)在內(nèi),每年所需費(fèi)用均比上一年增加4萬元,該船每年捕撈的總收入為50萬元.

(1)該船捕撈第幾年開始盈利?

(2)若該船捕撈年后,年平均盈利達(dá)到最大值,該漁業(yè)公司以24萬元的價(jià)格將捕撈船賣出;求并求總的盈利值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),

1)求的函數(shù)解析式;

2)作出的草圖,并求出當(dāng)函數(shù)個(gè)不同零點(diǎn)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)DE,N分別為棱PA,PCBC的中點(diǎn),M是線段AD的中點(diǎn),PAAC=4,AB=2.

(1)求證:MN∥平面BDE;

(2)求二面角CEMN的正弦值;

(3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為4,則判斷框中應(yīng)填入的條件是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

試題解析】

證明:(Ⅰ)取的中點(diǎn)為,連接,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面,

平面,∴.

,所以.

(Ⅱ)由面,

平面,所以為棱錐的高,

,知

,

.

由(Ⅰ)知,∴.

.

,可知平面,∴,

因此.

,,

的中點(diǎn),連結(jié),則,,

.

所以棱錐的側(cè)面積為.

型】解答
結(jié)束】
20

【題目】已知圓經(jīng)過橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案