【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域為R,求實數(shù)m的取值范圍;
(2)若存在實數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.
【答案】
(1)解:a=e時,f(x)=ex﹣ex﹣1,
①h(x)=f(x)﹣g(x)=ex﹣2x﹣1,h′(x)=ex﹣2,
由h′(x)>0,得x>ln2,由h′(x)<0,解得:x<ln2,
故函數(shù)h(x)在(ln2,+∞)遞增,在(﹣∞,ln2)遞減;
②f′(x)=ex﹣e,
x<1時,f′(x)<0,f(x)在(﹣∞,1)遞減,
x>1時,f′(x)>0,f(x)在(1,+∞)遞增,
m≤1時,f(x)在(﹣∞,m]遞減,值域是[em﹣em﹣1,+∞),
g(x)=(2﹣e)x在(m,+∞)遞減,值域是(﹣∞,(2﹣e)m),
∵F(x)的值域是R,故em﹣em﹣1≤(2﹣e)m,
即em﹣2m﹣1≤0,(*),
由①可知m<0時,h(x)=em﹣2m﹣1>h(0)=0,故(*)不成立,
∵h(m)在(0,ln2)遞減,在(ln2,1)遞增,且h(0)=0,h(1)=e﹣3<0,
∴0≤m≤1時,h(m)≤0恒成立,故0≤m≤1;
m>1時,f(x)在(﹣∞,1)遞減,在(1,m]遞增,
故函數(shù)f(x)=ex﹣ex﹣1在(﹣∞,m]上的值域是[f(1),+∞),即[﹣1,+∞),
g(x)=(2﹣e)x在(m,+∞)上遞減,值域是(﹣∞,(2﹣e)m),
∵F(x)的值域是R,∴﹣1≤(2﹣e)m,即1<m≤ ,
綜上,m的范圍是[0, ]
(2)解:證明:f′(x)=ex﹣a,
若a≤0,則f′(x)>0,此時f(x)在R遞增,
由f(x1)=f(x2),可得x1=x2,與|x1﹣x2|≥1矛盾,
∴a>0且f(x)在(﹣∞,lna]遞減,在[lna,+∞)遞增,
若x1,x2∈(﹣∞,lna],則由f(x1)=f(x2)可得x1=x2,與|x1﹣x2|≥1矛盾,
同樣不能有x1,x2∈[lna,+∞),
不妨設0≤x1<x2≤2,則有0≤x1<lna<x2≤2,
∵f(x)在(x1,lna)遞減,在(lna,x2)遞增,且f(x1)=f(x2),
∴x1≤x≤x2時,f(x)≤f(x1)=f(x2),
由0≤x1<x2≤2且|x1﹣x2|≥1,得1∈[x1,x2],
故f(1)≤f(x1)=f(x2),
又f(x)在(﹣∞,lna]遞減,且0≤x1<lna,故f(x1)≤f(0),
故f(1)≤f(0),同理f(1)≤f(2),
即 ,解得:e﹣1≤a≤e2﹣e﹣1,
∴e﹣1≤a≤e2﹣e
【解析】(1)①求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;②求出函數(shù)的導數(shù),通過討論m的范圍得到函數(shù)的值域,從而確定m的具體范圍即可;(2)求出函數(shù)f(x)的導數(shù),得到a>0且f(x)在(﹣∞,lna]遞減,在[lna,+∞)遞增,設0≤x1<x2≤2,則有0≤x1<lna<x2≤2,根據(jù)函數(shù)的單調(diào)性得到關(guān)于m的不等式組,解出即可.
【考點精析】解答此題的關(guān)鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導數(shù)的理解,了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學 來源: 題型:
【題目】在空間中有如下命題,其中正確的是( )
A. 若直線a和b共面,直線b和c共面,則直線a和c共面;
B. 若平面α內(nèi)的任意直線m∥平面β,則平面α∥平面β;
C. 若直線a與平面不垂直,則直線a與平面內(nèi)的所有直線都不垂直;
D. 若點P到三角形三條邊的距離相等,則點P在該三角形所在平面內(nèi)的射影是該三角形的內(nèi)心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結(jié)束時,負的一方在下一局當裁判,設各局中雙方獲勝的概率均為 ,各局比賽的結(jié)果都相互獨立,第1局甲當裁判.
(1)求第4局甲當裁判的概率;
(2)X表示前4局中乙當裁判的次數(shù),求X的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.
(1) 求f(x)的解析式;
(2) 設, 若|g(x)|-af(x)+a≥0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)如圖,在四棱錐P—ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求點D到平面PBC的距離;
(2)設Q是線段BP上的動點,當直線CQ與DP所成的角最小時,求二面角B-CQ-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將邊長為1的正方形沿對角線折起,使得平面平面,在折起后形成的三棱錐中,給出下列四種說法:
①是等邊三角形;②;③;④直線和所成的角的大小為.其中所有正確的序號是( )
A. ①③B. ②④C. ①②③D. ①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, =λ.若CM∥平面AEF,求實數(shù)λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com