【題目】下列四個(gè)結(jié)論:

①命題a=0,ab=0”的否命題是a=0,ab≠0”;

②已知命題p:xR,x2+6x+11<0,p:xR,x2+6x+110;

③若命題p與命題pq都是真命題,則命題q一定是真命題;

④命題0<a<1,loga(a+1)<log

其中正確結(jié)論的序號(hào)是_____.

【答案】②③.

【解析】分析:對(duì)結(jié)論逐一分析即可.

詳解:對(duì)于①,命題a=0,ab≠0”的否命題是a=0,ab≠0”,故錯(cuò);

對(duì)于②,命題p:xR,x2+6x+11<0,p:xR,x2+6x+110,故正確;

對(duì)于③,命題p與命題pq都是真命題,則命題q一定是真命題,故正確;

對(duì)于④,若0<a<1,,故錯(cuò)誤.

故答案為:②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
(1)若α⊥γ,β⊥γ,則α//β;
(2)若mα,nα, , 則α//β;
(3)若α//β,lα,則l//β;
(4)若 , l//γ,則m//n.
其中正確的命題是( )
A.(1)(3)
B.(2)(3)
C.(2)(4)
D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是線段A1A2的中點(diǎn),A4是線段A2A3的中點(diǎn),……,An是線段An-2An-1的中點(diǎn),……

(1)寫出xnxn-1,xn-2之間的關(guān)系式(n≥3);

(2)設(shè)an=xn+1-xn,計(jì)算a1,a2,a3,由此推測(cè)數(shù)列{an}的通項(xiàng)公式,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)通過對(duì)某企業(yè)今年的生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:

1

4

7

12

229

244

241

196

(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述的變化關(guān)系,并說明理由,,;

(2)利用(1)中選擇的函數(shù),估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).

(1)若,證明:函數(shù)必有局部對(duì)稱點(diǎn);

(2)若函數(shù)在區(qū)間內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)上有局部對(duì)稱點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: (a>b>0)的左焦點(diǎn)F1與拋物線y2=﹣4x的焦點(diǎn)重合,橢圓E的離心率為 ,過點(diǎn)M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點(diǎn),點(diǎn)P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.

(1)求的通項(xiàng)公式;

(2)求Sn,并判斷Sn+1,SnSn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),fx=x2–2x+2

1)求函數(shù)fx)的解析式;

2)當(dāng)x[m,n]時(shí),fx)的取值范圍為[2m,2n],試求實(shí)數(shù)m,n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案