如果對任意實(shí)數(shù)x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.

(1) f(2)=4   f(3)=8   f(4)=16   (2)2014

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

要制作一個(gè)如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個(gè)矩形,EFCD是一個(gè)等腰梯形,梯形高h(yuǎn)=AB,tan∠FED=,設(shè)AB=xm,BC=y(tǒng)m.
 
(1)求y關(guān)于x的表達(dá)式;
(2)如何設(shè)計(jì)x、y的長度,才能使所用材料最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個(gè)單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時(shí)間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起到有效去污的作用.
(1)若只投放一次k個(gè)單位的洗衣液,兩分鐘時(shí)水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可達(dá)幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2bxc(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=的圖象過原點(diǎn),且關(guān)于點(diǎn)(-1,2)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有A,B兩個(gè)投資項(xiàng)目,投資兩項(xiàng)目所獲得利潤分別是(萬元),它們與投入資金(萬元)的關(guān)系依次是:其中平方根成正比,且當(dāng)為4(萬元)時(shí)為1(萬元),又成正比,當(dāng)為4(萬元)時(shí)也是1(萬元);某人甲有3萬元資金投資.
(1)分別求出的函數(shù)關(guān)系式;
(2)請幫甲設(shè)計(jì)一個(gè)合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場經(jīng)營一批進(jìn)價(jià)是30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價(jià)元與日銷售量件之間有如下關(guān)系:

x
 
45
 
50
 
y
 
27
 
12
 
(I)確定的一個(gè)一次函數(shù)關(guān)系式
(Ⅱ)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當(dāng)銷售單價(jià)為多少元時(shí),才能獲得最大的日銷售利潤?

查看答案和解析>>

同步練習(xí)冊答案